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PREFACE

This is the first of two volumes constituting the final
technical report for a study entitled "Algorithmic Complexity".
The work was performed in support of the Information Sciences
Division, Rome Air Development Center, under U.S. Air Force
Systems Command contract F30602-79-C-0124. The duration of the
project was from June 1979 througnh August 198l.

The research described herein was performed by members of
the Department of Computer Science and Experimental Statistics
at the University of Rhode Island. Dr. Edmund A. Lamagna served
as Principal Investigator for this effort. ©Or. Leonard J. Bass
was Co-Principal Investigator. Three graduate assistants -~-
Messrs. Lyle A. Anderson, Ralph E. Bunker, ana Philip J. Janus
-- also worked on the project. Technical guidance was provided
hy Mr. Joseph P. Cavano, RADC Project Engineer.

The study consists of eight parts, whose titles are:
1. Measures of Algorithmic Efficiency: An Overview (Lamagna)

2. The Performance of Algorithms: A Research Plan (Lamagna,
Bass, and Anderson)

3. Fast Computer Algebra (Lamagna)
4. Systematic Analysis of Algorithms (Anderscn)

5. Adaptive Methods for Unknown Distributions in Distributive
Partitioning Sorting (Janus)

6. Expected Behavior of Approximation Algorithms for the
Euclidean Traveling Salesman Problem (Lamagna with E. J.
Carney and P. V. Kamat)

7. Data Base Access Methods (Bass)

8. An Experimental Evaluation of the Frame Memory Model of a
Data Base Structure (Bunker and Bass)

Volume I contains Parts 1 and 2, comprising a general
introduction to the entire series and a research plan. Volume
I1 contains the remaining six parts, describing the results of

several technical investigations which were conducted.
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Abstract

This document is an introduction to, and overview of, an
Algorithmic Complexity contract effort performed at the
University of Rhode Island (URI) for Rome Air Development Center
(RADC). The objective of the study was to conduct applied
research for understanding the relationship between the
efficiency of ‘algorithms and the overall quality of computer
software.

The paper begins with a description of the specific missions
of the overall contract eff.ct. This is followed by a
discussion of previous RADC work on software quality metrics,
including a critical evaluation of the measures relating to the
time and storage efficiency of programs. Next, a general
overview'of the field of algorithm analysis and computational
complexity 1is given., Several shortcomings in the nature of
current algorithmic complexity research are identified. These
perspectives provide the rationale for t{he particular research
directions pursued in this study. The final section of the
paper is a brief introduction to each of these investigations,

which are detailed in the other seven parts of this series,.
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SECTION 1
INTRODUCTIGON

The objective of this study was to conduct applied research
for the development of techniques for understanding the
relationship between the complexity of algorithms and the
overall quality of computer software. Measurement of software
quality is made in terms of factors in which cost and time
considerations are used to provide a baseline for evaluating
the factors. These factors include correctness, reliability,
efficiency, integrity, usability, maintainability, testability,
flexibility, portability, reusability, and interoperability.

Work in the area of analysis of algorithms and computational
complexity is directed principally at the factor of software
efficiency, while insuring that correctness is not sacrificed.
The goal of this work is to predict the behavioral
characteristics, particularly time and storage utilization, of
the software which will result by using certain algorithms.
These predictions provide a design tool whereby alternative
algorithms can be compared, both against each other and against
lower bounds on the resources known to be needed in order to
solve the problem. As a result, the algorithm which best meets
the requirements for the application at hand can be selected
for implementation. A useful by-product of such analyses is
that algorithms can often be improved or new, more suitable
algorithms developed. All of this leads to software of both

greater efficiency and higher quality.
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The thrust of this effort centered on investigating and
developing‘ techniques and measurements which can be used to
evaluate the complexity of algorithms and the software which
results from their use. Specifically, the tasks to be performed
as delineated in the contract's Statement of Work, were as
follows:

1) Perform a survey of algorithms for common problems,
ranking the amounts of computational resources used
with the best existing 1lower bounds to date. The
survey should present a comprehensive picture of the
state-of-the~art in the area of algorithm complexity.

2) Develop a research plan, both on a long and short term
basis, for advancing the state-of-the-art and solving
the problems of algorithm complexity. The plan should
address the amount and kind of research that is needed
in this areasa.

3) Study the inherent computational complexity of common
algorithms and show how this complexity gets generated
into a computer system design and eventually a computer
program.

4) Develop techniques for analyzing algorithms. These
techniques should be based on the control structures
used and should provide a better understanding of
computer program behavior. Study the process of
automating this type of analysis.

5) Determine metrics for software quality factors that are

related to the complexity of the algorithms used. The
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metrics should fit into RADC's ongoing program on
software quality.

6) Determine quantitative design tradeoffs between
important system parameters, such as storage and time
requirements, for certain algorithms.

7) Develop techniques for quantitatively studying the
influence of the total computing environment (i.e..
both hardware and software) on the design and

implementation of algorithms.

The remainder of this paper consists of three major
sections. The first of these discusses previous RADC work on
software guality metrics, including a critical evaluation of
the measures which relate to efficiency. The next section
provides an overview to the field of algorithm analysis and
computational complexity. Several shortcomings in the nature
and direction of current algorithmic complexity research are
identified.

These perspectives provide the rationale behind the
particular research directions we chose to pursue in this study.
The final section of the paper gives a brief introduction to and
perspective on these investigations, which are detailed in the

other parts of this series.
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SECTION 2

RADC SOFTWARE QUALITY METRICS

This study is an outgrowth of prior RADC work on software
quality measurement. The Air Force is constantly striving to
improve the quality of its software systems. High quality
software is necessary to satisfy the stringent performance,
reliability, and error-free requirements of software for Command
and Control, as well as other application areas. To help
accomplish these objectives, precise definitions of software
quality are needed. Based on this framework, metrics
quantifying software quality for objective analysis can be
derived. Establishment of such measures should have a
beneficial impact on the implementation and evaluation of a
software product at each stage of its development.

In an initial RADC study, McCall, Richards, and Walters (la]
identified and defined the following eleven factors affecting
software quality:

. correctness - extent to which a program satisfies its

specification and fulfills the user's mission objectives

. reliability - extent to which a program can be expecte”

to perform its intended function with required precision

. efficiency - the amount of computing resources and code

required by a program to perform a function
integrity - extent to which access to software or data by

unauthorized persons can be controlled
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. usability - effort required to learn, operate, prepare
input, and interpret output of a program
. maintainability - effort required to locate and fix an
error in an operational program
testability - effort required to test a program to insure
it perforﬁs its intended function
flexibility - effort required to modify an operational
program |
portability - effort required to transfer a program from
one hardware configuration and/or software system
environment to another
reusability - extent to which a program can be used in
other applications; related to the packaging and scope of
the functions that programs perform
interoperability - effort required to couple one ‘'system
with another
The above software quality factors are user-oriented by
nature. The study went on to identify specific criteria, or
attributes of the software or software production process, in
terms of which these factors can be judged. Examples include
error tolerance, consistency, accuracy, and simplicity for
reliability; and generality, modularity, software system
independence, machine independence, and self-descriptiveness
for reusability. The two criteria associated with efficiency,
the factor of primary interest here, were execution and storage

efficiency.
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Based wupon such criteria, McCall, Richards, and Walters
proposed a number of metrics, both objective and subjective,
for measuring software quality. The units of the metrics were
generally chosen as the ratio of actual occurrences to the
number of possible occurrences of some attribute. (E.g., for
keeping loop invariant computations outside of loops, the

measure

1 - # _loop dependent statement in loop
total # loop statements

was used). When this was not feasible, 0-1 measures based on
the absence or presence of a characteristic were used. (E.g.,
a performance optimizing compiler was used.) The measures
relating to efficiency are presented in Table 5 and discussed
later in this section.

The original RADC study also included a data collection and
validation effort for the metrics based on software development
data from actual Air Force systems [1b]. A preliminary handbook
for software acquisition managers on using the metrics was alsp
prepared [1lc]. A second, follow-on study for RADC was conducted
by McCall and Matsumoto [2a). This effort went on to refine and
enhance the software quality measurement process proposed in the
initial study. The work also included an analysis of metric
applications, and a further validation of some of the metrics
using actual software development data. The study also produced
a Software Quality Measurement Manual [2b] containing procedures
and guidelines for assisting software system developers in
setting quality goals, applying the proposed metrics, and making

quality assessments.
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In the remainder of this section, we discuss and critique
the previous RADC work on software quality metrics as it
relates to efficiency. We begin by discussing the relative
importance of efficiency, and the relationship between
efficiency and the ten other quality factors. Next, we examine

some of the efficiency measures which were proposed, commenting

on their applicability and suitability. Finally, we give a
critical assessment of these measures.

Just how important is efficiency, relative to the other
software quality factors, to various Air Force applications? As
part of both gquality metrics efforts, several people familiar
with Air Force missions were asked to identify the importance
of each of the factors to the software produced. The results
of the first survey {la) are presented in Table i by specific
mission, and those of the second effort [2a)] are shown in Table
2 grouped by application area. In the first survey, efficiency
received an overall rating of "high"™ importance, with only g
correctness and reliability receiving a higher overall rating
("high" to "very high"). In the -second survey, efficiency
received a "high" overall score in the Comm~nd and Control
area, "high" to "medium" for the Indications and Warning and
Simulation areas, and "medium" to “low" for Support Software.

What can be concluded from these surveys is that the

é relative importance of the quality factors varies according to
the application environment (with the exception of correctness
and reliability which achieved consistently "high" to "very

high" ratings). Efficiency is an important requirement in many
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Table 2

RELATIVE IMPORTANCE OF SOFTWARE NOUALITY FACTORS
AvERAGE AND STANDARD DEVIATION BY APPLICATION AREA ’

CORRECTNESS 4 o
RELIARILITY 3.75 0.5
TESTARIL ITY 3.75 0.5
FLEXIBILITY CommAND AND CONTROL  3.25 0.5
EFF ICIENCY 3 0.82
MAINTAINAKIILITY 44 SYSTEMS 3 0.82
USARILITY 2.5 0.58
INTEGRITY 2 1.15
REUSARILITY 1.5 y
INTEROFERARTLITY 1.5 1
FORTARILITY 1,25 0.5
CORRECTNESS 3.88 0.45
RELIABILITY 3.75 0.53
MAINTAINARILITY INDICATIONS 3.13 0.85
INTEROFERARILITY AND 3.04 1.08
USABILITY 3
0.08
TESTABILITY WARNING 3 0.88
FLEXTRILITY 2.92 0.88
INTEGRITY 24 SysTeEMs 2.79 1.02
EFF ICIENCY 2.75 0.85
FORTARILITY 1.92 0.97
REUSABILITY 1.71 0.75
CORRECTNESS 4 o
RELIABILITY 4 0
USARILITY 3.6 0.55 '
MAINTAINARILITY 3.2 0. 45 ;
TESTABILITY 2.8 0. 45 i
FLEXIBILITY SIMULATION 2.8 1.1 |
EFFICIENCY 2.4 0.55 3
INTEGRITY 5 SYSTEMS 2 1.41
INTEROFERARILITY 1.8 1.3
FORTARILITY 1.4 0.55
5 REUSARILITY 1 o
,
; USARIILITY
' RELIABILITY 3'33 g':i
: MAINTAINAKILITY 35 0.55 ‘
FORTABILITY 35 0.9
: CORRECTNESS 3 33 0. 50
5 REUSAFILITY SUPPORT SOFTWARE 3 3% o 8o
| FLEXIRIL ITY 317 0. 41 !
, TESTABILITY 6 SysTems s 0.5 :
INTEROFERARILITY 2.5 1 20
- EFF ICIENCY 1. 67 0 8o |
1 INTEGRITY 133 o 6o
i From: McCall and Matsumato, "Software Quality Metrics
~ Enhancements", RADC-TR-80-109, Vol. T
129
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software systems, particularly those dealing with Command and
t Control, Communications; real-time applications, and ir systems
\ with limited available resources (i.e., slow processors, small
memories). In such systems, efficiency can become an overriding
factor which, if not present, might possibly render the system
useless. For example, failure to meet timing requirements in
certain military contexts can result in the 1loss of 1life,
materiel, or inability to make a critical decision on time. On
the other hand, efficiency tends to be l-ss important in data
processing environments, such as Management Information Systems,
where one does not usually need to respond immediately to the
information and reports produced.

What is the relationship between efficiency and the other
‘ software quality factors? McCall, Richards, and Walters discuss
this question in [la], and Tables 3 and 4 summarize their
conclusions. One would expect most of the quality factors to
have a high positive correlation. For example, one would
obviously expect portable systems to be highly reusable, and

that the properties of software which make it reusable will

also aid in making it portable. Good documentation and
structured coding practices contribute to the correctness,
testability, usability, and maintainability of a system, so one
would also expect a direct relationship between these factors. 3
Unfortunately, efficiency appears to have a negative limpact
on most of the other quality factors (all except correctness and
reliebility), as seen in Table 3. This is most disconcerting
because it is the only quality factor which exhibits this

1-10
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Table 3

RELATIONSHIPS BETWEEN SOFTWARE QUALITY FACTORS

& &

& &
FACTORS Qc,.?
Q
&

CORRECTNESS

RELIABILITY O

EFFICIENCY . N\

INTEGRITY

USABILITY

MAINTAINABILITY

TESTABILITY

FLEXIBILITY

0|0|0|0
000

PORTABILITY

REUSABILITY o

0|0|6|0/0CI0|0|0

INTEROPERABILITY

LEGEND |
If a high degree of quality is present for factor, ;
what degree of quality {s expected for the other:

O = High . O - tov ?

Blank = No relationship or application dependent

From: Mcfall, Richards, and Walters, "Factors in Software i
Quality", RADC-TR-77-369, Vol. I
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Table U
SOFTWARE QUALITY TRADEOFFS INVOLVING EFFICIENCY
. INTEGRITY The additional code and processing required to
Vs control the access of the software or data
EFFICIENCY usually lengthens run time and require additional
storage.
USABILITY The additional code and processing required to ease
Vs an operator’'s tasks or provide more usable output
EFFICIENCY usually lenghten run time and require additional
storage.
MAINTAINABILITY Optimized code, incorporating intricate coding
Vs techniques and direct code, always provides
EFFICIENCY problems to the maintainer, Using modularity,
instrumentation,and well commented high level ‘code to
increase the maintainability of a system usually
increases the averhead resulting in less efficient
operation,
TESTABILITY The above discussion applies to testing,
VS
EFFICIENCY
PORTABILITY The use of direct code or optimized system software
Vs or utilities decreases the portability of the
EFFICTIENCY system,
FLEXIBILITY The generality required for a flexible system
Vs increases overhead and decreases the efficiency
EFFICIENCY of the system.
REUSABILITY The above discussion applies to reusability.
Vs
EFFICIENCY
INTEROPERABILITY Again the added overhead for conversion from
VS standard data representations, and the use of
EFFICIENCY interface routines decreases the operating
efficiency of the system,
;;j From: MeCall, Richards, and Walters, "Factors in Scftware Quality",

RADC - TR-77-369, Vol. I

A
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property to any significant degree. It makes it seem as though
virtually all of the other quality factors must be sacrificed if
one desires efficiency.

The reasons for this —conclusion arise from McCall,
Richards, and Walters taking a *"low level" view of software
efficiency. That is, they are concerned with the efficiency of
the object code rather than with efficiency at the level of
algorithm design. They assume that the algorithm to be used is
somehow given, and that efficiency involves fine tuning the
algorithm to increase its speed or decrease its storage
requirements at the implementation phase. In this study, we are
concerned with increasing efficiency by making the most
suitable choice of algorithm at the design phase, before any
coding begiﬁs.

The rationale behind McCall, Richards, and Walters
conclusions 1is summarized in Table 4. The basic paradigm
behind their reasoning goes as follows. The traditional
activities of the software development cycle include first
designing a solution to a problem, then coding it, and finally
testing the resultant implementation for correctness and to
ascertain performance data. Sometimes efficiency 1is an
important design factor, or an initial version of the software
may fail to meset the timing and storage wutilization
requirements in the system specification. In such cases, the
programs may be coded, or recoded, using intricate coding
techniques or using assembly language instead of a high-level

language. Such techniques have inherent difficulties associated
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with them in terms of the increased effort needed to write,
debug, maintain, and transport the resulting software.

In the paradigm described above, little Fhought is given to
reexamining the underlying algorithms wused, and perhaps
researching or developing alternative approaches. Programmers
generally use only the standard algorithms with which they are
familiar or, when faced with a novel application, use a direct
"prute force" approach. Instead, algorithmic complexity focuses
attention on the overall design of a software system. By
suitably formulating and modeling the problem to be solved,
alternative algorithms for its solution can be studied and the
best available one selected. The choice of algorithm can then
aid in the selection of an appropriate programming language and
implementation techniques. The advantages of this approach are
that the performance of the selected algorithm can be estimated
before the coding and testing effort actually begins, and design
tradeoffs can be considered more quantitatively. Efficiency
need not have a negative impact on the other software quality
control factors if such an approach is taken:

The efficiency measures proposed by McCall, Richards, and
Wwalters [la] are presented in Table 5. Two execution efficiency
metrics, one dealing with iterative processing and the other
with data usage, and a storage efficiency metric were developed.
€ach of the three metrics is an average of 5 to 11 elemental
scores. The metrics may be applied to either a single module or
an entire software system. The measurements are made during the

design, coding, and debugging phases of the software cycle,

¥
B




e cem i el e~ T

I "T0A ‘69E€-LL-HL-OGYH ‘uA3TTENY 3JBM3JOS Ul SJO3DEBy, ‘SJI33[EBM Pue ‘SPJIBYITH ‘TTBIOW WO

$IUNRIOIS UO[S}I3 .
USMIT¥IS UDJS|I9p JUSIO}a4N} § —v

*PIPod A(3Ud134449 SIWANINS U0;S13aG (L)

SIUIWIPYS. I|QRINIIND 1030
3p07 2(QEINING (TWO}ISUNFUCU § ..-v

*8pod 31QRINIMXD {FUC|IDUNJUOY jO 8843 ()
D D +sdoo| U} GupydedunsGujxded 3344/31q 30 3344 (§)

(thessteo so )

" A *5Ae|J3A0 JO Jquny (9)
Aa__ormnu.axu punoduwod §

Fry .—v
Uyl J40W PIULJIP UCSSIALAXD punodwod §
"JU0 PAULIP SUO}SSIAEND punodwo) (£)
*pasn abenbury
! D Aquasse/4a| jdwod Buyzjw)ydo ddumeojsagd (2)
Sjuaumyeys dooj g 1%303 -
.mcop U} SIUMNRINIS JUIPUIEIP dOOLUOU § —v

0 0 01

R

: *doo| "
D D 30 3n0-3day suo}IeIndwo3 Juapuadap dooy-uoN () ..m
(3Lnpow 4q) ‘ m
S3YNSYIW AINI1I1443 ONISS3I0¥4 3AIiVMILI 2 *33 ON1SS3I0ud ;
JALIVEILL !
!
D A0QP 3Uj| SU MG « INIVA JIYIIN |
. ¥W31S4S ‘
D N91S30 0L 03LVI01TV SINIWIYINDIY IINWHOSUId L °33 S1HINIYIND3Y
IA31)1443
\ NOILNJ3X3
gyt gyt [T
3NWA {ouzsaa| INVA fonssaanl 37 MYA lowssas Te ML
DI LVANIWITaWI]  N9IS30 S1H0IY

i AINIIIL43  :(S)u0L1dvd

SIT413W AINIIIT443 NOILNIIX] !

_ , v a1qnL




SI|npou_§_(v303

= 3NTYA J1¥L3N

D D Wpawa(d yIed 4oy sasnsedw abesn ejep jO wns WILSAS
D L S1uUawa|d aqedijdde 4 = INTVA II¥1IW
D SJUawa|d d|qed}{dde wouy 34035 | 9303 3NCOW
* Bupssadoud

U313 439 405 PIUILIAL 40 PAXIPUY vIRg (S)

Aueo.ufoao 3}UN UOUIOIUN SO $IIUILINID0 s\_v

+ 9dA1/s34un Jo 33}0yd uouwo) (¥)

nu:ueﬁﬁuobmwuauoxu‘ -p.
SUQ|SS3LdXa Jpou Xpu §

* suojssaudxa apow-xju oy (€)

sa[qeiJdeA § {®303
paie|dap Usym Paz|(®}

*PIJT|IIP UIYM von—.w:u:: sa|qeiarp (2)
* bupssadoad JUa}I4349 404 padnoab e3eg (1)

1-16

(aLnpow Aq) :3¥NSVIW AINIIII443 30vSN vive € °33 39VSN VIVa
s3|npow § {303
D D [ NPOW YI€d 40} - INIVA JIYULIM
saJnseaw bujssacoud aap3e4d3} jO wns W31SAS
s3uawala ajgedt|dde § 103 = INTVA JITYLIN
ﬁ“““”u m””“u SUaW3 |3 3 qed) (dde wouy 31005 (N30} 300
Au._: uoLindexd &
{ 3wy BNV SO
D *sabeyuyl o (6)
WLy :om:ouxu -
Aue: sbeyuj| e npod —v
D *sabexui| anpoy (8)
@ %0t % 40 L g3 1
INVA {onssang 3N fonrsaa| 30YA lon/ssa 181N R el
HOLLYANIWIIGWI]  N91§30 S W03y [

AON31D1443  :{S)u0LIV4

(Q3NNTLNOD)  SITNHLIW AINIIII443 NOLiNIIXT

Qg 9TqaeL




LWL e amwt et e Amiv L v ma s mma = e 1 s

sa{npou § (v303 = 3NIVA JI¥LIN

010

202 J40j SaUNSRIW AJUI|LD1})d abedols O wns H3LSAS
$IUAWD1D I|qedLidde ¢ = INTYA JTYLIN
SJUI LI I|qed) | dde wody 21095 (€303 3N00W

oo o
1

000

=

=]
(-

=
)

A SUdW3|d viep 4 -
SIUSWa (@ €iep JUPPUNDIZ —v

‘SIU3WA L3 ®IPP JuepUNPIL 3O d44 (L)

‘pasn
abenbuv| A{quasse/ua|jdwod Bujziwyido abesols (01)

A mucosoucuun—ouou-
Rt SeHIT !

" *$3pod 33edydnp ou (6)

uucaeouuum‘pnuou -
SIUSWII €IS | PUC|IOUNJUOU 7 -v

‘9p0D |RUOLIDUNLUOU 4O 3344 (B)
‘pasn bupyoed wieg (/)
*pazjLjan Juausbeuew Liowaw djweukg (9)

uumvmoucaoeurnuou
Aaunv pasnun jo JunOwy -Fv

‘uoj3vjusubas eieg (§)

numco—sagmoan_euou
YI56Udl juswbes wujXew -_v

“vojjejuawbas wwabouy (v)

A $2|qQeLJeA § 10103 -
35U0 URY] 340U PIVLJap SILQRJ4UA § —v

*aJuo A{uo pau}jap eIRP UOWWO) (€)

‘pasn sai31149e4 abedols (enjup (2)

‘ub}sap 03 patedul(e sIuawdsjnbad abesors ([)
(3Lnpou £q) :3YNSYIW AINIIIT333 39VHOLS L *3S [AIN3ID1333 J.w¥OLS

@ %0 | 7 %0 ( @ 80 ( -

INVA | Gursaa] 3 | Gursan| 3V [ours i MULIN NOI¥311¥08nS

ROTLVINIAT1eR1] _ ND1S30 SIH03¥ /NonaLiv
AINIIJIS43  :(S)¥010V4

SITUL3W AINITITI43 ISWHOLS

oG 9TqRL

1-17

—— -




P L TR TN

while their impact on efficiency is felt during operation.

The {iterative processing metric is based upon elemental

scores for the following items:

. keeping loop independent computations outside of loops

. using an execution optimizing dompiler

avoiding recomputation of repeated expressions
overlay usage

avoiding bit/byte packing and unpacking in loops

. avoiding use of nonfunctional code

. coding decision statements efficliently

overhead for module linkages

overhead for operating system linkages

The data usage efficiency measure is based on the following

criteria:

. grouping data for efficient processing

. initializing variables when declared

avoiding mixed-mode expressions

. avoiding operations on uncommon units

referencing and indexing data for efficient processing

The elements of the storage efficiency measure are as

follows:

e e e ¢ -

allocating storage requirements to design
using virtual storage facilities

defining common data only once

. program segmentation

. avoiding unused data

. using dynamic memory management

using data packing

. —



. avoiding use of nonfunctional code

. avoiding duplicate statements

. using a storage optimizing compiler

avoiding redundant data elements

The proposed efficiency measures incorporate virtually all
of the maxims of efficient coding practice. By doing so, they
hope to in some sense reflect the actual time and storage
utilization of a computer program. Unfortunately, the metrics
can only provide indications of possible efficiency or
inefficiency. A program with an execution efficiency score of
.93 will not necessarily run faster than one with a score of
.85. This is due to two principal reasons. First, the metrics
weigh all of the elemental scores equally, instead of providing
greater weight to the factors contributing most to the
program's time and storage utilization. But any such weighing
scheme would need to vary from one program to another. Second,
and more importantly, the executional efficiency of a computer
program is a dynamic function which reflects the program's
response to various inputs. The proposed measures are static
in nature, and have no way to examine this behavior.

As an oxtreme example of this problem, one could take a
program and add one redundant loop which is executed a large
number of times. This would impact the running time of the
program dramatically, but result in only a miniscule change in
the program's efficiency score. Several lines of nonfunctional
code would only slightly increase this measure since it 1is

defined as
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1 - ¥ nonfunctional executable statements
total # executable statements

The impact is further diluted since this score is only one »f
nine elements contributing to the overall iterative processing
metric.

Another difficulty with the proposed metrics concerns the
fact that they are low level measures which deal primarily with
the object code. Many of the measures examine program features
which can be improved by today's optimizing compilers. These
include taking 1loop invariant computations out of loops,
factoring out recomputed subexpressions, rearranging decision
statements to speed processing, performing array computations
(referencing and indexing) efficiently, initializing variables,
and flagging inaccessible statements and unreferenced data.
(See [3] for a good discussion of optimizing compilers.) When
such compilers are used, programmers should write source code
in the clearest and most straight-forward manner, and let the
compiler take care of improving it. It would be unfair to use
metrics which do not account for this.

A number of serious questions regarding the applicability
and meaning of the proposed efficiency metrics remain. If a
program achieves a score of .86, say, what exactly does this
mean? Should the job be recoded to make it more efficient, or
is the score satisfactory? Should an alternative algorithm be
used? If such an alternative is explored, is it meaningful to

compare the metrics for the two programs?
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Algorithmic complexity gets around these difficulties by
dealing with time and storage directly, rather than with
measures based on coding practices derived only indirectly from
them. Time and storage are effective and consistent measures of
system resource utilization. This means they can be used as
yardsticks to compare different implementations of the same
algorithm, competing algorithms, or even the different parts of
a system. Thus, algorithmic’ complexity provides s framework
within which both measures and techniques for improving
software efficiency can be sought.

unfortunately, the field of algorithmic complexity has not
matured to the point where it is possible to predict the time
and storage requirements of the typical computer programs
written in actual practice. Furthermore, the state-of-the-art
is such that a great deal of mathematical and computer science
experience is necessary before an individual is capable of
performing such analyses, and so the known techniques are not
yet ready for widespread field use. 1In this sense, we are not
currently able to propose concrete alternatives to the RADC
efficiency metrics. much of the research proposed and
conducted in this effort is aimed toward narrowing this gap.
In particular, the work on systematic analysis of algorithms is
directed toward ultimately developing automated tools and aids
for this purpose. Furthermore, the work on experimental
analysis of algorithms provides a framework and methodology for
ascertaining performance data to compare the relative efficiency
of competing algorithms and to catalog such information for use

by system designers and programmers.
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SECTION 3
ANALYSIS OF ALGORITHMS AND COMPUTATIONAL COMPLEXITY

The research conducted in this effort falls into the area
of computer science known as analysis of algorithms and
computational complexity. The goal of work in this field is to
quantitatively study the efficiency of algorithms for various
computational tasks.

To a large extent, software is currently produced by first
designing a solution to a problem, then coding it, and finally
testing it to ascertain performance data. Algorithm theory
focuses on the design phase of software production. The basic
tenet is that software tasks often involve problems that can be
formulated in an abstract, mathematical manner. Once a problem
is suitably formulated, alternative methods for solving it can
be studied, and the best available one selected for
implementation. The advantages of this approach are that the
performance of the selected algorithm can be estimated before
coding actually begins, and design trade-aoffs can be considered
more quantitatively.

The inherent computational difficulty, or complexity, of a
problem is studied by developing lower bounds on the amounts of
various computational resources, such as time and storage,
required for its solution. This is usually done by deriving
lower bounds on the number of operations or steps required for
the solutions of problems such as matrix and polynomial

calculations, sorting, or determining properties of graphs and
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other combinatorial problems. One example of a result of this
type is that sorting n items requires at least log n! = n log n
comparisons between items.

Unfortunately, there are at present only a small number of
techniques of generally limited power for deriving nontrivial
lower bounds on the complexity of problems. Unless there exists
a lower bound on the complexity of a problem which closely

approximateé the amount of resource used by the best known

algorithm, the existence of a far more efficient method for
solving the problem cannot be precluded. For example, it was
long believed that the usual procedure for multiplying two
general n x n matrices, using n> multiplications and n3-n? add-
itions, was optimal. However, a now-famous algorithm for this
problem which wuses only about order n2:8l arithmetic
operations was published by V. Strassen in 1969 ([4]. A very !
recent algorithm by V. Y. Pan uses only order n2-49 ?
operations [5]. Despite these advances, the best lower bounds
to date reveal only that order n2 multiplications or divisions i
and n? additions or subtractions are required. Hence, either '
a better lower bound or an asymptotically superior matrix
multiplication algorithm must exist.

In recent years, a number of significant advances have been

made in the field of algorithms. These advances range from the

T A1) m el s e A v

development of faster algorithms for particular tasks, such as
the fast Fourier transform, to the discovery of a certain class
of important problems called "NP-complete" for which all known

algorithms are computationally inefficient. The development of
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new algorithms that are better than those currently in use
leads to both greater efficiency and the feasibility of solving
larger problems. Conversely, knowing that a problem is
characterized by a certain intrinsic degree of difficulty is
significant since every program that solves the problem will
have associated with it at least a certain minimal cost in

terms of system resource utilization.

The Appendix to this document contains an outline of the
major topics and issues -addressed in the area of algorithm
analysis and computational complexity. Also included there is
an annotated select bibliography referencing materials which
cover and survey most of the work which has been done to date.

In the remainder of this section, some shortcomings in
current algorithmic complexity research are discussed. The aim
is to point out areas where new approaches and more work are
needed. Such constructive criticism of the field was helpful
in identifying specific problems to be addressed as part of this
study.

Algorithmic complexity research has tended to concentrate
on the algorithms themselves, rather than with practical
details relating to their eventual implementation. For this
reason, the results of the research are often stated in terms
of the asymptotic, or main dependence, as a function of the
input size, n. As an example, if the running time of a
particular  algorithm  is  c3n3.conZecynecg, it  would
be sald to be of "order n3", written 0(n3). In such

order-of-magnitude analyses, the multiplicative and additive
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constants (c5, ¢, c2, and c3), which are dependent on
the particular implementation of the algorithm, are not usually

considered. Unfortunately, there has not been sufficient
interest in establishing the relative sizes of these constants
for various competing algorithms. An algorithm whose running
time is 2n3 will be actually faster than one with running time

50n2 for n < 25, even though the asymptotic behavior of the
latter ic better. The point at which two such algorithms have
equal running times is referred to as their "crossover point“.

A typical scenario in the analysis of algorithm is an easy
to understanu initial algorithm with a running time of n3,
say, followed by more complicated algorithms with running times
of n2:-5, n2 log n, n2, etc. Zealous researchers seem to
enjoy making contests out of such results. There {is an
unfortunate tendency among both researchers and practitioners to
misinterpret their importance. While each successive algorithm
may be asymutotically faster, generally speaking it is also more
complex to understand and implement and involves more
computational overhead (i.e., it has bigger constant factors).
The asymptotically fastest algorithm is often best only for
input sizes greater than those ever likely to be encountered in
actual practice. Knowing just where the crossover points occur
is essential if implementers are to choose the most efficient
method for their particular circumstances.

Furthermore, many existing bounds have limited attention to
the number of instances of some key operation used in the

solution of a given problem (e.g., comparisons for sorting,
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multiplications or the total number of arithmetic operations
for matrix product). while the overall running time of
algorithms for the problem may be driven by such
considerations, the effects of loop control and testing, memory
accesses, and various bookkeeping chores should not be totally
ignored. The costs o’ these ancillary operations will determine
the constant factors associated with an algorithm, and may
constitute the primary reason for selecting one procedure over
another.

Another shortcoming of algorithmic complexity research is
that most investigations have focused on the worst case, rather
than the typical, behavior of algorithms. The principal reason
for this is that the worst case is usually far more tractable
to mathematical analysis. Another difficulty is that there is
often no way to identify reasonably the probability distribution
of problem instances. (For example, a typical assumption for
sorting is that all input permutations are equally likely.)
Nonetheless, the average performance of an algorithm is probably
far more important from a practical standpoint since the worst
case may actually occur rarely, if ever.

One area where more useful work could be done |is
experimental studies of algorithm performance. (See, for
example, reference [6].) In such investigations, alternative
algorithms for the same task are implemented and their
behaviors measured and compared using a standard input data
base. Performance profiles, consisting of tables and graphs,

showing execution times or storage requirements as a function of
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input size can be obtained from such experiments. This approach
to algorithm analysis has the important advantage that real
performance data on typical (viz., average case) inputs are
obtained, instead of merely studying the algorithm in more
abstract (mathematical) terms. When the actual crossover points
become known as a result of such work, we strongly suspect that
a few of the new, asymptotically fast algorithms will be found
wanting for practical input ranges.

A catalog of performance profiles for the most important
algorithms used to solve commonplace computational tasks, like
those listed in the Appendix, would be a very powerful software
design tool. This information could serve as a guide to
software implementers in selecting the best algorithm for their
particular operational environment. Similar performance data is
available to system designers in other disciplines, but not to
software engineers. For example, engineers consult tables
giving the stress and strain properties of materials when
designing a bridge. Based on such considerations, they choose
a design which will meet the operational requirements (loading,
weather, etc.). With software, we tend to build the system
first and test it to see if it will withstand the load
afterward. This is akin to erecting a bridge first and then
driving traffic over it to see if it collapses!

While the general field of algorithm analysis has undergone
enormous growth over the past decade, little attention has been
given to develpping systematic techniques for performing such

analyses. Most of the work has been done by applying ad hoc
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procedures which are specific to the algorithms under
consideration. A systematic study of'this area is needed to
better understand the underlying principles involved, and to
identify and classify the major techniques used. This, in turn,
would provide an engineering framework for the analysis of
algorithms, making the techniques used more widely accessible
and promoting their application as a software design
methodology.

D. E. Knuth is regarded by most as the founder of this
field. His three volume series (ultimately to contain seven

volumes), The Art of Computer Programming [7], serves as both

an encyclopedia of results and a model of the type of algorithm
analysis which is needed. 1In a 1972 paper describing the goals
of such research [8], Knuth states:

"Analysis of algorithms is an interesting
activity which contributes to our fundamental
understanding of computer science. In this case,
mathematics is being applied to computer problems,
instead of applying computers to mathematical problems.

Analysis of algorithms relies heavily on
techniques of discrete mathematics, such as the
manipulation of harmonic numbers, the solution of
difference equations, and combinatorial enumeration
theory. Most of these topics are not presently being
taught in colleges and universities, but they should
form a part of many computer scientists' education.

Analysis of algorithms is beginning to take shape
as a coherent discipline. 1Instead of using a different
trick for each problem, there are some reasonably
systematic techniques which are applied repeatedly.
Furthermore, the analysis of one algorithm often
applies to other algorithms,

Many fascinating problems in this area are still
waiting to be solved."

This statement holds equally true today.
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SECTION 4

THE URI/RADC ALGORITHMIC COMPLEXITY EFFORT

To fulfill the objectives of the contract, given the context

described

above, several subtasks were identified and

undertaken. These included the following:

1)

2)

3)

4)

5)

surveying the state-of-the-art in several important
problem areas,

critiquing the tenor and general direction of present
research in algorithm analysis and computational
complexity, and constructing an applied research plan
for dealing with the perceived deficiencies,

developing systematic procedures for the analysis of
algorithms, with the hope that the analysis methods
developed might ultimately be automated,

developing techniques for coping with problems which
are computationally intractable (i.e., not solvable
without using a prohibitively large amount of computer
time), and

designing and conducting experimental investigations
of algorithm efficiency as a complementary, oOr
sometimes alternative, approgch to the other more

theoretical work.

Specific technical problems were selected as a test bed for

examining each of these issues.
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4.1 Measures of Algorithmic Efficiency: An Overview

This document is an introduction to, and overview of, the
entire effort. We began by describing the specific missions of
this study, as delineated in the contract's Statement of work.
Next, we presented the historical context for this work in
terms of prior RADC studies on software quality measu.ement.
Attention was concentrated on the measures of efficiency which
had been proposed. We discussed the relationship between
efficiency and overall software gquality, and gave a critical
assessment of the metrics in terms of their ability to reflect
actual time and storage utilization.

Then we gave an overview of the field of algorithm analysis
and computational complexity, whose objective is to predict the:
executicn behavior of computer programs. The Appendix contains
further information in the form of an outline of the major
topics addressed in this area. Also included there is a select
annotated bibliography with references which cover and survey
most of the work which has been done to date.

These perspectives provide the background for the
particular research directions pursued in this study. The
remainder of this section provides an introduction to, and a
perspective on, the other parts of the series, which describe

the results of these investigations.
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4.2 The Performance of Algorithms: A Research Plan

One of the tasks to be undertaken as part of the Statement
of Work for this contract effort was to develop a research plan
for RADC in the area of algorithmic complexity. The second
paper in the series constitutes that plan.

An important measure of the quality of a computer program is
the amount of system resources required to execute it. At the
level of analysis of the underlying algorithm, time and storage
are standard and effective measures. Unfortunately, when a
program is actually executed on a particular computer system,
time and storage become much less precise measures of the
quality of the program. This 1is because the executional
behavior of a program is a complicated function of the
efficiency of the underlying algorithm, the programming
language used to implement the algorithm, the speed and
architecture of the hardware, and features of the operating
system.

Previous work in algorithmic complexity has focused
attention almost exclusively on the time and storage
requirements for particular computational problems (e.g.,
sorting, matrix multiplication). 1In this research plan, a more
general approach to the issue is taken -- an examination of the
performance of algorithms on actual computer systems. This
plan recommends continuing theoretical work of an applied
nature on important open questions in the field of algorithm
analysis and computational complexity. The problem application

areas considered include computational algebra, sorting and
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information retrieval, pattern matching in strings,
combinatorial optimization problems, and computational geometry.
Moreover, new and unresolved issues concerning the relationship
between programming languages, computer architecture, and the
performance of algorithms on computer systems are also
identified.

The plan suggests a number of ways for advancing the
state-of-the-art to solve problems in the area of algorithm
performance. The questions raised are all of a practical
nature, and the technology currently exists for addressing all
of the issues discussed. In this sense, any cne of the
recommendations made could be regarded as a short-term task,
although a systematic attack on all of the issues addressed
would certainly constitite an ambitious 1long-range research

plan.

4.3 Fast Cemputer Algebra

Another task to be performed under the Statement of Work
was to survey previous work in the area of algorithmic
complexity. To survey the entire field would have required an
inordinate effort in view of the vast amount of research which
has been undertaken over the past decade. In fact, several
lengthy books have been written on the subject, none of which
cover the entire field. Instead, we have provided an overview
of, and pointers to, this work in the form of an outline and

bioliography appearing as the Appendix to this document.
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Additionally, we have selected two areas to survey in detail --
computational algebra and data base access methods.
Furthermore, each of the papers in the series begins with a
survey of work already done in the particular problem area it
addresses.

The first of the surveys explores the topic of algebraic
complexity. (See references [7b], [9], and [10] for more
detail.) This problem area was selected because of its
pervasive importance and because a good tutorial on the subject
did not previously exist. The specific questions considered
include the problems of raising some quantity (e.g., a number,
polynomial, or matrix) to a power, evaluating a polynomial at
one or several points, and multiplication of polynomials and
matrices. Many new algorithms for solving such familiar
algebraic problems on computers have recently been devised.
These methods are more efficient than the classical ones for
sufficiently large problem sizes, and some of them have now
become quite famous (e.g., the Fast Fourier Transform,
Strassen's matrix multiplication method).

In addition to surveying these most significant
developments, the paper attempts to give a feeling for the
spirit of how algorithmic complexity research proceeds. The
nature and types of questions asked by researchers are
explored. Several of the problems studied are shown to
interact with each other in interesting, and perhaps unexpected,
ways. General algorithmic design strategies, like divide-and-
conquer, are applied to more than one of the problems. Some of

the algorithms are shown to be optimal by deriving lower bounds.
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p 4.4 Systematic Analysis of Algorithms

The Statement of Work also called for the development of
systematic procedures for the analysis of algorithms. virtually
all of the work to date in analyzing algorithms has been done by
applying ad hoc procedures. A growing number of such methods

have been developed. but most of these are known to only a

relatively small number of researchers. A systematic study of
this area 1is needed to better understand the wunderlying
principles, and to identify and classify the major techniques
used. This, in turn, would provide an engineering foundation
for the analysis of algorithms, making the techniques more
widely accessible and promoting their application as a software
design methodology.

Many current software engineering research efforts are
aimed at automating software quality control investigations
(e.g., program correctness analyzers, tools for measuring the
"psychological complexity" of computer programs). Using
techniques somewhat analogous to those employed in proving or
checking proofs of program correctness, it should be possible
to begin making progress toward the development of automated or
semi-automated tools for symbolically analyzing the performance
of programs or algorithms.

s The gross limits of automatic algorithm analysis are known.
The execution time of a computer program is not, in n=neral, a
decidable property. This follows directly from the well-known
"halting problem” of computability theory (see [11], for

example). Program correctness is also an undecidable property.
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While any system which attempts to determine the correctness or
execution time of an arbitrary program is doomed to failure,
this does not imply that techniques cannot be developed to apply
to a large class of the programs written in actual practice.
Cohen and Zuckerman [12) have built a prototype system
called PL/EL which greatly aids in the analysis of algorithms.
The system consists of a structured Algol-like language, called
PL, for describing algorithms and an interactive command
language, €L, for communicating and obtaining behavioral
information. The programmer 1is required to specify the
branching probabilities, and the system works out the details
of the analysis using an algebraic manipulation package.
Wegbreit has developed both formal and prototype systems
for analyzing program behavior. His prototype, called METRIC,
is capable of analyzing simple LISP programs with less user-
supplied information than PL/EL [13]. Wegbreit's formal system
is based on Floyd-Hoare semantics, and the analysis of the
algorithm is a natural by-product of formally verifying its
correctness [l4)]. Recently, Ramshaw [15] has shown that there
are some basic problems with Wegbreit's approach. He remedies
these deficliencies by using frequencies, instead of
probabilities, in his analyses. But due to the 1logical
incompleteness of his axiom scheme, there are some simple
programs which it cannot handle either. This flaw seems to be
symptomatic of those formal systems of algorithm analysis which

have grown from the work in program verification.
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While program verification has not lived up to the promises
which were held out for it several years ago [16)], the field of
automatic analysis is by no means played out. We have chosen a
different route in the development of a formal system for
algorithm analysis. Our approach is tied very closely to the
semantics of a program. Looping is translated into equivalent
recursive control structures so that recurrence relations
describing program behavior are readily ascertained.
Probability density functions are used to handle conditionals.

The approach 1is detailed in the fourth paper of this
series. It has been advanced to the point where it can be
successfully applied to a large class of problems, including
all of the examples dealt with in previous work. The approach
is systematic in that it treats all algorithms the same way.
It holds promise for ultimately being automated. A necessary
step in doing so would be to develop supporting techniques to
solve the recurrence relations using an algebraic manipulation
package (e.g., MACSYMA, REDUCE, MATHLAB). (See [17) for an
elementary discussion of recurrence equations and techniques
for their solution. Algebraic manipulation systems are

discussed in [18].)
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4.5 Adaptive Methods for Unknown Distributions in Distributive

i T

Partitioning Sorting

Experimental investigation of algorithm performance is one
area we mentioned that needs more attention if the fruits of
a}gorithmic complexity research are to be brought to bear as
useful software design techniques. A catalog of performance
profiles for important algorithms would be a welcome tool in
assisting software designers to choose between alternative
methods, and to estimate and understand the expected behavior
of a system before it is implemented. Because we believe that
this is such an important but neglected area, we selected it
for one of the subtasks performed in this study. Our objective
was to point out both the benefits of this type of analysis, as
well as to explore issues of experimental design and develop a
framework within which subsequent investigations might be
conducted.

Timing statistics, themselves, are an inadequate measure of
algorithmic performance since they are highly dependent on the
machine and operating system used to run the experiments.
Furthermore, in a paging or multi-programming environment, such
statistics exhibit a large variance depending on system
workload. Since we are interested primarily in comparing
algorithms, rather than implementations, our approach is to
count the number of times each straight-line section of code is
executed when the algorithms are run on a large body of
representative test data. Then weights are assigned to the

various straight-line segments to reflect their relative costs
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in as implementation-independent a manner as possible. The
experimental investigation described in the fifth part of this
series served as as test bed to validate these ideas, using an
exciting new sorting technique as a case study.

A large percentage of data processing applications is spent
sorting data. For this reason, it 1is not surprising that
sorting is perhaps the most widely studied problem in computer
science. The faster data can pe sorted, the more computer time
and money can be saved. Most sorting methods are based upon
comparisons between data items. Any such algorithm must use at
least n log n comparisons (See the well-known lower bounding
argument in Section 5.3.1 of reference {[7c].) In 1978 W.
Dobosiewicz, a Polish computer scientist, published a paper
describing a new sorting technique called Distributive
Partitioning Sorting (DPS) [19]. The method generated a lot of
interest and excitement, and was considered by many to be a real
breakthrough, because its expected running time was only 0(n).
This is possible because tne procedure is not based upon item
comparisons, like most conventional sorting algorithms in use
(e.g., aquicksort, heapsort, bubblesort), bu. wupon ideas
borrowed from distribution methods like radixsort.

Although OPS was an innovative method, a number of
important prob.ems remained before it could be considered a
practical method for sorting data on a computer. First, the
method was biased toward uniform data, performing poorly on
skewed distributions. Second, the method incorporated several

somewhat esoteric features which, although guaranteeing a linear
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expected running time, would result in very high constant
factors and perhaps render the method of theoretical interest
only. Third, the originally published version had several minor
errors which were fairly easy to correct. Finally, ODPS
contained a number of places where some experimental fine-tuning
could greatly improve the algorithm's performance. We undertook
to remedy these deficiencies.

To show that DPS was indeed a practical sorting method, we
benchmarked an impleméntation of it against quicksort.
(Quicksort was developed in 1962, and is widely regarded as the
fastest expected time sorting algorithm on most machines. See
Section 5.2.2 of reference [7c] for more information.) We found
that on uniform data, DPS performed better than quicksort for
inputs of 750 c¢r more iteds. We then developed two adaptations
of DPS, ~called the Ranking Method and the Cumulative
Distribution Function (CDF) Method, to deal with skewed data.
These methods transform unknown distributions into wuniform
distributions and then perform the sorting.

Experiments were run on four algorithms (two versions of
DPS, Ranking, and CDF) using four distributions (uniform,
normal, Poisson, and exponential) for six input sizes (500,
1000, 5000, 10000, 20000, 30000 items). It was found that if it
is known in advance that the data distribution will typically be
uniform, normal, or only slightly skewed, then it s advisable
to use DPS. However, if it is possible the data distribution
might be very skewed, or if extremely large or small values

exist relative to the rest of the data, then there is little to
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lose and a lot to gain by using the COF adaptation. The COF
Method was only 2% to 4% slower than DPS in the uniform case,
but ran up to 12% faster than OPS for 30000 items on
exponentially distributed data. The Ranking Method was found

to contain too much overhead to be competitive with DPS.

4.6 Expected Behavior of Approximation Algorithms for the

Euclidean Traveling Salesman Problem

Combinatorial optimization has been one of the most actively
studied application areas of algorithmic complexity research.
This area encompasses a wide variety of problems such as finding
properties of graphs and networks, optimal scheduling, bin
packing, and set covering and partitioning. (See reference
[{20] for a thorough picture of this application area.) Despite
the seeming diversity of these problems, similar algorithm
design strategies can be used to solve most of them, and
interesting relationships between many of the problems have
been shown to exist.

The problems which have been studied in this area can
fruitfully be divided into two categories, depending on their
worst case execution times. The first class consists of those
problems having algorithms whose running time is polynomial in
the size of the input. Important examples include finding the
shortest distance between two points in a network, the minimum
spanning tree problem, maximizing flows in a network, matching
and marriage problems, and testing a graph for planarity. 7o a

novice, many of the problems which fall into this category at
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first seem computationally intractable, requiring essentially
exhaustive enumeration procedures for their solution. Usually
significant insights into a problem, exploiting some underlying
structure, are required before polynomial time algorithms can be
devised.

The second class of combinatorial problems are those for
which no polynomial time algorithm is known. Algorithms for
these problems generally resort to exhaustive enumeration of
essentially all possible solutions, and in the worst case have
exponential runnihg times. A simple example is the subset sum
problem. Here, we are given n positive integers X1y eee9Xn
and another positive integer y. We are asked to identify the

subset of x;'s whose sum is closest to, but does not exceed,

the value of y. There are 2N subsets of the Xij's, and it
appears as though virtually all of these will have to be tested
in the worst case. OQOther important combinatorial problems for
which no polynomial time solution currently exists include 0-1
integer programming, the traveling salesman problem, testing
for graph isomorphism (equivalence), minimal graph coloring,
satisfiability of formulas in propositional 1logic, and a
variety of covering, packing and partitioning problems on sets
and graphs.

One might argue that the notion of polynomial time is too
imprecise to be used as a criterion for classifying the
computational difficulty of a problem. In fact, it has proven
to be a very convenient measure. Actually, very few polynomial

algorithms with running times of degree greater than 4 or 5 have
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ever been studied, although an 0(nl00) procedure would
unfortunately still meet this definition of "easy".
Furthermore, Table 6 shows that even for moderate problem
sizes (e.g., n=50), exponential algorithms are totally
infeasible.

Most of the well-known combinatorial problems which appear
tg be intrinsically exponential belong to a class called the
NP-complete problems, first explored by Cook [21] and Karp [22]
and the subject of a recent book by Garey and Johnson (23].
The problems in this class are computationally equivalent in
the sense that if a polynomial time algorithm is found for any
one of the problems, then all of them can be solved in
polynomial time. Results of this nature are obtained by
constructing a polynomial time transformation mapping instances
of one problem into equivalent instances of another.
Conversely, if an exponential lower bound can be proven for any
one of the problems in a sufficiently general model of
computation, then all of the NP-complete problems will require
exponential time. Most researchers in algorithmic complexity
feel that this issue is the most important open queston in the
entire field. Since this difficult question has been worked on
by large numbers of prominent researchers, it appears that a
satisfactory resolution may not be forthcoming for quite some
time.

In view of the fact that instances of NP-complete problems

arise frequently in actual computing practice, ways of coping

with the apparent intractability of such problems must be devised.
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Table 6

EXECUTION TIME VS, INPUT SIZE

TimMe INPUT S1ze N
CoMPLEXITY 2 10 50
N 0.002 sec 0.010 sec 0.050 sec
N LOG, N 0.002 sEc 0.033 sec 0.282 skc
N 0.004 sec 0.1 sec 2.5 skc
N> 0.008 skc 1.0 sec 125, sec
2" 0.004 sec 1.024  sec 35,7 CENTURIES
3" 0.009 sec | 59,05 sec | 2.28x10'! centuries
't 0.002 sec | 60,43 min| 9.64x10°" cenTuRIES

1 OPERATION/MILLISECOND
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One approach is to develop fast approximation algorithms, or
heuristics, for their solution. Johnson [24] is a pioneering
work in this area. 1Instead of looking for the optimal solution
to an instance of a problem, these procedures seek to find
acceptably good solutions, to within specified tolerances, but
which operate quickly.

The Euclidean traveling salesman problem is perhaps tlie most
famous example of an NP-complete problem. In this problem, a
traveler has to visit each of a number of designated cities on a
map and return home via the minimum distance route. All known
algorithms which find the shortest tour have a running time which
is exponential in the number of cities. In view of the
computational infeasibility of finding this exact solution for
even a moderate number of points, much attention has been focused
on the quality of approximation algarithms for this problem.

Previous researchers have examined the ratio of the tour
length produced by various heuristic methods to that of the
optimal tour in the worst case. Rosenkrantz, Lewis, and Stearns
(251 have considered several approximation schemes from this
perspective. The best approximation algorithm to date for this
problem has been developed by Christofides [26,27]. It has an

0(n3) running time and is guaranteed to find a path whose
length is within a factor of 1% times the optimum. Guarantees of

this kind provide a warning about the possible dangers involved

with using some particular method. However, such results tend to
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be overly conservative (pessimistic) since worst data seldom, if
ever, is encountered in practice. fFurthermore, there s
experimental evidence that most reasonable approximation schemes
perform about equally well on the average, although their worst
case performances can vary greatly.

In the sixth part of this. series, we consider the behavior
of several approximations for the Euclidean traveling salesman
problem. The expected length of the tour constructed by an
algorithm is estimated from the order statistics of the
distribution of the distance between points. (See, for example,
reference [28] for an introduction to order statistics.) The
approximation methods <considered include nearest neighbor,
arbitrary insert, nearest and cheapest insert, and two methods
based on finding the minimal spanning tree (including
Christofides' algorithm). For the distribution examined, all of
the approximations are shown to produce a tour whose expected
length is 0(/;), where n is the number of cities, and at most a
small constant factor (ranging from 25.7% to 87.5%) from
optimal. These results show a marked improvement over the worst
case bounds for the algorithms considered. 1In fact, the nearest
neighbor and arbitrary insert methods are not known to produce a
tour whose worst case performance ratio is bounded by any
constant.

An important contribution of this work is to show how order
statistics can be applied to say significant things about the
expected behavior of heuristics for the Euclidean traveling
salesman problem. There 1s no reason why these techniques could

not be applied to approximation algorithms for other NP-complete
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computational problems, as well. To date, most research has
focused on deriving worst case performance guarantees for these
methods, while very 1little 1is krnown about their expected
performance. Since many of these approximations can be
characterized as "greedy" algorithms ({.e., they minimize or
maximize some criterion at each step), they would make good
candidates for the application of order statistics, provided it
is possible to characterize reasonably the distribution of
inputs. Further explorations of this type could prove to be

most useful and interesting.

4.7 Data Base Access Methods

Data base systems is an area of computer science which has
become increasingly important over the past few years. The
reasons for this attention are immediately evident. Oata base
systems provide an enterprise with centralized control for its
operational data. This contrasts with most enterprises today,
where each application maintains its own private files. The
advantages of centralized control include sharing of information
among users, elimination of redundant data, ability to enforce
certain standards on the way data is kept and handled, data
integrity and elimination of data inconsistency, and
maintenance of data security. References [29] and [30) provide
an overview of current data base system technology.

Despite the enormous growth of activity in this area, a
number of relatively unexplored and difficult problems remain.

One question which has not heen completely resolved deals with
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the selection of efficient storage structures and algorithms to
access and update large data bases.

Data base algorithms are different from other algorithms in
several significant respects. First, the most important measure
of algorithmic efficiency is the number of input/output, or 1/0,
operations which must take place to execute an algorithm. On a
typical computer system, the central processor operates at
speeds about 1000 times faster than the external devices
(generally disk drives) where the data base resides.
Furthermore, data bases are dynamic in nature since information
is continually being added, deleted, or modified. Thus, the
focus is on the amount of 1/0 necessary to access and modify a
collection of records in a data base, rather than on the amount
of work done by the central processing unit, or CPU.

For these reasons, data base access methods was selected as
the topic for a second survey undertaken as part &4f the contract
effort. The seventh paper in this series presents a discussion
of the efficiency of several strategies for accessing and
maintaining large data files. The records in the file contain
several fields, or variables. We want to be able to access the
record(s) in the file with specified values of certain
variables. The forms of the problem depend on the number of
variables in a query, and whether these variables are specified
by a single value or a range of values. (For example, an
employee record might consist of name, social security number,

department, position, and salary. We might want a list of all

the employees in a certain department, or a list of all employees
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in that department earning a salary in some particular range.)
The storage structures surveyed ‘include K-ary and radix
trees which are wutilized by the access methods presented,
B-trees and extensible hashing for univariate access, and radix
bit mapping and‘K-D-B trees for multivariate access. All of the

techniques described are currently suitable for practical use.

4.8 An Experimental Evaluation of the Frame Memory Model of a

Data Base Structure

One of the tasks undertaken as part of the contract effort
was the evaluation of a storage structure model for data base
systems.

A desirable goal of data base research is the automatic
generation of data base structures. A designer would specify
some limited number of characteristics of the data and would
have automativally returned the data structures, the access
items, and the access paths. A step in the direction of that
goal would be for the designer to furnish usage information and
a proposed storage structure, and to have returned the expected
response parameters. The frame memory model of storage
structure has been proposed as a mechanism for predicting
system response as a function for wusage and structural
information. In this study, we report on an experimental

validation effort for frame memory.
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Most attempts at automatic design involve the following

steps:

1.

We

design

Determine how the users of -the file system are planning
to use the system. This provides the necessary input
for the automatic design system. Usage is defined by
the different types of recor&s in the system, their
lengths and fields, plus the expected frequencies of
additions, deletions, modifications, and retrievals to
records and subsets of records in the file.
Select a set of storage structures for the records
based on usage patterns defined in step 1.
Evaluate how this set of storage structures perform in
the anticipated environment. This evaluation must take
into account the change that the storage structures
will undergo due to maintenance.
Assign a rating to the set of storage structures based
on this evaluation. This rating will determine whether
or not the set of structures will be considered further
as a possible design choice.
Inform the designer as to the set of structures which
have received the best evaluations.
are interested here in what is involved in step 3 of the

process. This step is complex partly because the amount

of time needed to retrieve data from a storage structure rarely

remains constant throughout the life of the storage structure.

March [31] has proposed that step 3 of the design process

be divided into two steps as follows:
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3a. Compute the average time to perform fundamental
operations on the storage structure, taking into
account the effects of wupdates to the storage
structure. Fundamental operations include reading a
logical block, scanning a logical block of records for
a particular record, directly accessing a record, and
writing a logical block.

3b. Use information from step 3a to calculate the average

time to perform an operation of interest, which may
involve a number of fundamental operations. For
example, the operation of adding a record to a data
structure can involve first the operation of reading
in the logical block which will contain the record and
then writing the updated logical block.

March proposed a model of secondary memory which he called
frame memory. He also analyzed the cost of using this model to
implement retrievals and modifications to a data base. The
designer would specify data structure and retrieval requirements
in terms of the frame memory. The cost of satisfying these
requirements would be calculated and reported to the designer.
The designer could then choose the best data structures.

This makes sense only if the equations used to predﬁct the
performance are correct and there is an implementation of frame
memory so that the designer can then use this implementation to

actually access the data structures created.
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Under this contract effort, we undertook an implementation
of frame memory. The implementation was tested to see |if
March's analysis ylielded correct predictions. The results are
described in detail in the eighth, and final, part of this

series. They indicate that the predicted performance was close

to the experimental values for almost all cases.
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APPENDIX
Analysis of Algorithms and Computational Complexity
Qutline and B8ibliography

The goal of computational complexity is to quantitatively
study the efficiency of algorithms for various tasks performed
on a computer. Complexity theory investigates the inherent
difficulty of a particular computational problem by deriving
good lower bounds on the amounts of various resources, such as
time and storage, required for its solution. This provides a
framework within which the performances of alternative
algorithms for the problem can be compared and improved methods
of solution developed.

The major topics in this emerging discipline are listed in
the outline which follows. The outline is divided into four
principal sections:

1) general issues which delineate the scope of any

particular algorithmic complexity investigation,

2) design strategies which have been used to develop new
algorithms in diverse application areas and to
categorize the problem-solving approaches embodied in
most algorithms,

3) methods for deriving 1lower bounds, or theoretical
minima, on the resource requirements to solve a given
computational problem independently of the algorithms

used, and
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4) application areas which have been studied, together
with the major problems which have been investigated
within these areas.

For those interested in further information, an annotated
select bibliography, 1listing the most important books and
survey papers wnich have appeared, is also provided. Virtually
all of the research published to date is accessible through

references in the works cited.
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Algorithm Analysis and Computational Complexity
An Outline

General Issues

1. Time and space analysis
2. Models of computation
. Turing machines
computer-like models (RAMs and RASPs)
decision trees
straight-line programs (chains)
3. Exact vs. asymptotic analysis
. measuring problem size
order-of-magnitude (0-, 2 -, 8- notation)
4. Upper vs. lower bounds
5. Worst case vs. average case

Algorithm Design Technigues

1. Divide-and-conquer (recursion)
2. Greedy method

Dynamic programming

Basic search and traversal
Backtracking

Branch-and-bound

Approximation algorithms

Data structuring

@ ~NONWE W
e e e o o .

Lower Bounding Methods

1. Trivial lower bounds

_ 2. Decision trees
! . "information~-theoretic" bounds
i oracles and adversary arguments
3. Problem reduction/transformation

. NP-completeness
4. Algebraic techniques
5. Miscellaneous tricks

Problem Areas

1. Ordering and information retrieval
sorting

. merging

. selection

. searching
2. Algebraic and numerical problems

. evaluation of powers
polynomial evaluation and interpolation
polynomial multiplication and division
matrix multiplication
greatest common divisors
factoring and primality testing ~

e i e & o < 8 vttt
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3. Graphs and networks
. minimal spanning tree
. shortest paths .
. connectedness and survivability (connectivity,
transitive closure, articulation points,
biconnectivity, strong connectivity)

. circuits (Eulerian, Hamiltonian, traveling salesman
problem)

. graph coloring

. network flows

. planarity

. isomorphism

. cliques : ;
. bipartite matching !

4. . Computational geometry
. convex hull
. closest point problems
intersection problems

5. Miscellaneous roblems
. pattern matching in strings
cryptography
. scheduling
. operations research

L
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Select Bibliography
Books

D. E. Knuth, The Art of Computer Programming (vol. 1,
Fundamental Algorlthms; Vvol. 2, Seminumerical Al orithms;
Vol. 3, Sorting and Searching). Addison-Wesley, 1968,
1969, 1973.

Presents and discusses a wide spectrum of computational
problems and algorithms. It is the authoritative source
for algorithm theory, and does a nice job on certain
aspects of complexity theory (e.g., the treatment of
sorting, merging, and selection in vol. 3). This classic
work provides thoroughly comprehensive and historical
coverage of its subject matter.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

A good one-volume introduction to the field. The book is
organized around the major algorithm design techniques --
divide-and-conquer, the greedy method, dynamic programming,
basic search and traversal techniques, backtracking,

branch-and-bound, and algebraic simplification and
transformations. Chapters on lower bound theory,
NP-completeness, and approximation algorithms are also
included.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.
A more theoretically oriented one-volume overview of the
field. Covers topics from a wide variety of problem
areas. The book also formulates and compares several
computer models such as random access register and stored
program machines, and automata-theoretic models (e.g.,

Turing machines, finite automata, pushdown machines).
Contains an outstanding bibliography.

A. Borodin and I. Munro, The Computational Complexity of
Algebraic and Numeric Problems. American Elsevier, 1975.

An excellent monograph providing virtually complete coverage
of its subject area. Considers such problems as polynomial
evaluation, interpolation, and matrix multiplication.

E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial
Algorithms: Theory and Practice. Prentice-Hall, 1977.

Discusses the complexity of a number of important
combinatorial ©problems and analyzes the best known
algorithms for their solution. Topics include exhaustive
search techniques, generating combinatorial objects, fast
sorting and searching, graph algorithms, and NP-hard and
NP-complete problems.
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R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completness. Freeman, 1979.

Detailed guide to the theory of NP-completeness. Shows how
to recognize NP-complete problems and offers practical
suggestions for dealing with them effectively. Provides
an overview of alternative directions for further research,
and contains an extensive list of NP-complete and NP-hard
problems.

J. E. Savage, The Complexity of Computing. Wiley-Interscience,

L.

1976.

Covers all of the significant results on the complexity of
switching networks, and surveys several other problems in
complexity theory. Importantly, this work also attempts to
provide a framework for the quantitative study of
time-storage tradeoffs and other performance evaluation
criteria on models of real computers.

I. Kronsjo, Algorithms: Their Complexity and Efficiency.
Wiley, 1979.

A mathematically oriented book. Its most important
contribution is a detailed discussion of algorithms for
numerical problems from the perspective of their numerical
accuracy, as well as efficiency. Problems considered
include polynomial evaluation, iterative processes, solving
sets of linear equations, and the fast Fourier transform.
Several nonnumerical applications, most notably sorting and
searching, are also discussed.

S. Even, Algorithmic Combinatorics. Macmillan, 1973.

An early treatment of the basic questions explored in

combinatorial mathematics. Algorithmic aspects of
enumeration problems including generation of permutations
and combinations, trees and their properties, and

fundamental properties of graphs and networks are
considered.

S. Even, Graph Algorithms. Computer Science Press, 1979.

A rigorous treatment of several applications and problems
from graph theory. Trees and their oproperties, graph
connectivity and searching, network flows, graph planarity,
and NP-completeness are discussed in this monograph.

S. Baase, Computer Algorithms: Introduction to Design and

Analysis. son-Wesley, 1978.

An upper-level undergraduate text covering selected topics
frow sorting, graphs, string matching, algebraic problems,
relations, and NP-completeness. Aims to develop systematic
principles and techniques for studying algorithms. Level
of presentation is mathematically thorough.
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E. Goodman and S T. Hedetniemi, Introduction to the Design
and Analysis of Algorithms. McGraw-Hill, 1977.

An undergraduate text, oriented more toward students of
programming and less mathematically rigorous than Baase.
Like Horowitz and Sahni, this book is organized around the
basic algorithm design methods, but its treatment is not
nearly as comprehensive (usually one example per technique).

Survey Papers

weide, "A survey of analysis techniques for discrete

algorithms", Computing Surveys, Vol. 9, No. 4 (December
1977), pp. 291-313.

A good overview of the field. Discusses all the major
issues including models of computation, measuring problem
size and asymptotic complexity, lower bounding techniques,
worst and average case behavior of algorithms, and
approximation methods for NP-complete problems.

L. Bentley, "An introduction to algorithm design", Computer,
Vol. 12, No. 2 (February 1979), pp. 66-78.

Ancther good introduction, written oprimarily for the
novice. Contains more 1illustrative examples than Weide,
but does not discuss 1issues in as much depth. Problems
covered include subset testing (via sorting and searching),
pattern matching in strings, the FFT, matrix
multiplication, and public-key cryptography.

J. E. Hopcroft, "Complexity of computer computations", Proc.

IFIP Congress '74, Vvol. 3. (1974), pp. 620-626.

Discusses unifying principles in the design of efficient
algorithms through the use of several well-chosen

examples. More mathematically oriented than som: of the
other surveys.

E. M. Reingold, "Establishing lower bounds on algorithms -- a

?Trvg¥", AFE%? S?ring Joint Computer Conf. '72, Vol. 40
97 [ ppo 4 -ae -

A clearly written survey of many of the early results
concerned with deriving lower bounds on the complexity of
functions. Emphasizes ordering (sorting, searching,
merging, and selection) and algebraic problems.
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R. E. Tarjan, "Complexity of combinatorial algorithms", SIAM
Review, Vvol. 20, No. 3 (July 1978), pp. 457-491.

Examines recent research into the complexity of
combinatorial problems, focusing on the aims of the work,
the mathematical tools used, and the important results.
Topics covered include machine models and complexity
measures, data structures, algorithm design techniques, and
a discussion of ten tractable combinatorial problems.

R. M. Karp, "On the computational complexity of combinatbrial
problems", Networks, Vol. 5, No. 1 (January 1975), pp.
45-68.

A very readable introduction to the theory of
NP-completeness.

Finally, the following articles in Scientific American provide
a layman's introduction to most of the key issues 1n the field:

D. E. Knuth, "Algorithms", vol. 236, No. 4 (April 1977),
pPp.63-80.

H. R. Lewis and C. H. Papadimitriou, "The éfficiency of
algorithms", vol. 238, No. 1 (January 1978), pp. 96-109.

L. J. Stockmeyer and A. K. Chandra, "Intrinsically difficult
problems", Vol. 240, No. 5 (May 1979), pp. 140-159.

N. Pippenger, "Complexity theory", Vol. 238, No. 6 (June 1978),
pp. 114-124.

M. E. Hellman, "The mathematics of public-key cryptography"®,
vol. 241, No. 2 (August 1979), pp, 146-157.

R. L. Graham, "The combinatorial mathematics of scheduling",
Vol. 238, No. 3 (March 1978), pp. 124-132.

R. G. Bland, "The allocation of resources by linear program-
ming", Vol. 244, No. 6 (June 1981), pp. 126-1l44.
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ALGORITHMIC COMPLEXITY
Part 2

Preface

An important measure of the quality of a computer program is the amount of
system resources required to execute it. At the level of analysis of the
underlying algorithm, time and storage are standard and effective measures.
Unfortunately, when a program is actually executed on a particular computer
system, time and storage become much less precise measures of the quality of
the program. This is because the executional behavior of a program is a
complicated function of the efficiency of the underlying algorithm, the
programming language used to implement the algorithm, the efficiency of the
code produced by the compiler, the speed and architecture of the hardware, and
features of the operating system.

Previous work in algorithmic complexity has focused attention almost
exclusively on the time and storage requirements of algorithms for particular
computation&l problems (e.g., sorting, matrix multiplication). In this
research plan, we take a more general approach to the issue — an examination
of the performance of algorithms on actual computer systems. This plan
recommends continuing theoretical work of an applied nature on important open
questions in the areas of algorithm analysis and computational complexity.
Moreover, new and unresolved issues concerning the relationships between
programming languages, computer architecture, and the performance of

algorithms on computer systems are also identified.
2-1
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This plan, developed for Rome Air Development Center under Contract No.
F30602-79-C-0124 (Algorithmic Complexity), suggests a number of ways for
advancing the state-of-the-art to solve problems in the area of algorithm
performance. The questions raised are all of a practical nature, and the
technology currently exists for addressing all of the issues discussed. In
this sense, any one of the recommendations made could be regarded as a
short-term task, although a systematic attack on all of the issues addressed

here would certainly constitute an ambitious long-range research plan.
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THE PERFORMANCE OF ALGORITHMS

A Research Plan

1. INTRODUCTION
1.1 Background

The notion of “algorithm” is of central importance in computer science and
practice. An algorithm is a precise, step-by-step description of a
computational procedure. To solve a problem on a computer, a human must
communicate an algorithm for the problem to the machine using some language as
a vehicle. This process is called programming, and the language used for
communication is a programming language. In this view of computing, a program
is merely the realization of an algorithm in a programming 1anguage.

Because algorithms play such a central role in computational processes,
the performance of any computer-based system will depend to a large extent on
the algorithms selected and how they are implemented in both software and
hardware. In this research plan, we will explore three general approaches to
this issue. The first of these is the classical study of algorithmic
complexity, in which the time and storage resources required to implement a
solution to a given problem are examined. Unfortunately, most research in
this area usually stops at this point, although the impact of algorithms on
the overall performance of computer systems extends to other levels.

Once an algorithm 1s selected, it must be coded in a particular
programming language, and the features of the language chosen as well as its
actua) implementation will greatly affect system performance. Furthermore,

the underlying hardware configuration of the machine on which the programs are
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to be executed will also impact the performance of the algorithms. The
architecture of a computer system can affect the performance of algorithms in
terms of both its suitability for the problem application area and its ability
to efficiently support features of the programming languages to be used.
Thus, the second and third approaches to be examined here are the impacts of
programming languages and machine organization on the performance of
algorithms.

To a large extent, computer-based systems are currently produced by first
choosing a hardware configuration. Then, the traditional activities of the
software development cycle occur. These activities include designing a
solution to the problem, coding it, and finally testing the resultant
implementation for correctness and to ascertain performance data. If a system
does not meet the timing and storage utilization requirements in the
specifications, portions of the programs are recoded. This often necessitates
the use of assembly language, with its inherent difficuities in terms of
writing, debugging, maintaining, and transporting software. Little thought is
ever given to reexamining the algorithms used, and perhaps researching or
developing alternative approaches. Programmers generally use only the
standard algorithms with which they are familiar or, when faced with a novel
application, use a direct “brute force" approach. Since the hardware
configuration was frozen long ago, it is altogether too late to select an
architecture which might have been more suitable to begin with.

Our approach to the performance of algorithms focuses attention on the
overall design of a computer-based system. The basic tenet is that the tasks
to be performed can generally be modeled in a precise (mathematical) or

semi-rigorous way. Once a problem is suitably formulated, alternative
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algorithms for 1its solution can be studied and the best available one
selected. The choice of algorithm can then ‘aid in the selection of an

appropriate programming language and machine configuration. The advantages of
this approach are that the performance of the selected algorithm can be
estimated before the coding and testing effort actually begins, and design
tradeoffs can be considered more quantitatively.

1.2 An OQverview

This research plan will be structured within two general frameworks. The
first is a description of the three approaches to the performance of
algorithms already identified:

1) algorithmic complexity,

2) programming 1anguages, and

3) wmachine organization.

A discussion of how each of these issues directly impacts the performance of
algorithms on actual computer systems is coupled with sugggested research
topics aimed toward better understanding the underlying principles involved.

The field of computer science known as analysis of algorithms and
computational complexity grew out of theoretical investigations of the
inherent difficulty of solutions to programming problems in specific
application areas. In the final portion of this paper, the most important of
these areas are considered. These include the following:

1) computational algebra, .

2) sorting, searching, and database systems,

3) pattern matching in strings,

4) combinatorial optimization problems, and

5) computational geometry.
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The nature of previous work in each of these areas is discussed, and the most

significant remaining issues which relate to the overall performance of

computing systems are identified as areas worthy of further investigation.
Finally, an Appendix which puts previous research efforts on algorithm

camplexity into perspective is included at the end of the paper. This

Appendix consists of an outline of the major topics, issues, and approaches
which have been investigated, together with an annotated bibliography listing
the key books and survey papers which have appeared. "

2. APPROACHES TO THE PROBLEM

2.1 Algorithmic Complexity

Research into algorithmic complexity concentrates on the algorithm itself,

rather than its implementation in any particular programming language or on

any given machine. This type of research is predicated on the assumption that

there are things about an algorithm which are true regardless of its

implementation. .For this reason, the results of this research are often
N stated in temms of the asymptotic behavior, or main dependence, as a function
of the input size, n. As an example, if the running time of a particular
, . algoritm 45 cyndtc,nPecinvcy, 1t would be said to be of “order
i . n3*,  written 0(n3). In  such order-of-magnitude analyses, the
multiplicative and additive constants (co, €1» ©2» and c3). which are

dependent on the particular implementation of the algorithm, are not usually

considered. Fortunately, there s a growing interest in establishing the

i relative sizes of these constants for various competing algorithms. An

4 14 algorithm whose running time is 2n3 will be faster than one with running

] 2-4 ’ i




i

time 50n2 for n<25, even though the asymptotic behavior of the latter is
better. The point at which two such algorithms have equal running times is
referred to as their “crossover point®.

Both theoretical and experimental research are possible in this area. The
theoretical investigations include the determination of upper and lower bounds
on the behavior of algorithms for a particular problem, the systematic
analysis of algorithms, and the investigation of computational tradeoffs
(e.g., between time and storage). Experimental investigations concentrate on
measuring the typical behavior of complex algorithms over a wide range of
input sizes. The object is to determine the crossover points of alternative
algoritms which perform the same function. This is equivalent to determining
the relative sizes of the additive and multiplicative constants which specify
the behavior of the algorithms under study.

Much of the classical work in algorithmic complexity has been directed
toward bounding the number of operations required to perform various
computational tasks. For example, a well-known result of this kind states
that at 1least logz n: = n 1092 n comparisons are required to correctly
sort a list of n items. This number is called a lower bound, and holds
irrespective of the method used. Any comparison-based sorting algorithm may
use more comparisons, but it cannot employ fewer. When we look at any
particular sorting algorithm and determine the number of comparisons it uses,
then we find an “upper bound” on sorting. The known algorithm using the
fewest comparisons establishes the best upper bound to date. The object of a
good deal of algoritmic complexity research is aimed at bringing the
theoretical lower bound and practical upper bound together for various

probiems.
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Upper and lower bounds provide a convenient yardstick for assessing the

relative efficiency of an algorithm. As new algorithms and problems are

jnvestigated, this approach will doubtliessly continue to prove fruitful.

There

are, however, several areas where more work should be done to improve

the usefulness of such results.

1) Existing bounds limit attention to some key operation associated with

2)

the solution of a given problem (e.g., comparisons for sorting,
multiplications or the total number of arithmetic operations for
matrix product). While the overall running time of algorithms for the
probTem may be driven by such considerations, the effects of loop
control and testing, memory accesses, and various bookkeeping chores
should not be totally ignored. The costs of these ancillary
operations will determine the constant factors associated with an
algorithm, and may constitute the primary reason for selecting one
procedure over another.

Most bounding investigations have focused on the worst case, rather
than typical, behavior of algorithms. The principal reason for this
is that the worst case is usually far more tractable to mathematical
analysis. Another difficulty is that there is often no way to
reasonably identify the probability distribution of problem
instances. (For example, a typical assumption for sorting is that all
input permutations are equally 1ikely.) Nonetheless, the average
performance of an algorithm is probably far more important from a

practical standpoint since the worst case may actually occur rarely,

if ever.
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3) There are at present only a small number of techniques of generally
limited power for deriving lower bounds on the complexity of functions
which are nonlinear in both the number of inputs and outputs. Unless
there exists a lower bound on the compliexity of a function which
closely approximates the amount of resource used by the best known
algorithm, the existence of a more efficient procedure cannot be
precluded. Unfortunately, interesting 1lower bounds are quite
difficult to derive mathematically, and we may have to be satisfied
for some time to come with our intuition concerning the optimality of
certain algorithms.

One technique of research seems to have been overlooked in this area.
This is to produce a systematic catalog of algorithms, arranged by function,
giving their known or suspected upper and lower bounds. This type of listing
has proved to be a useful technique in the past to help identify the
underlying order in the objects being studied. Making a catalog of important
algoritms is different from the way that computer science has been done so
far. Even if this kind of ,roject does not result in any new discoveries, it
will be of considerable value to those who are interested in the engineering
aspects of algorithms.

Many current software engineering research efforts are aimed at automating
softw'are quality control investigations (e.g., program correctness analyzers,
tools for wmeasuring the “psychological complexity" of computer programs).
Using technigues somewhat analogous to those employed in proving or checking

7
proofs of program correctness, it should be possible to.begin making progress
toward the development of automated or semi-automated tools for symbolically
analyzing the performance of programs or algorithms.
-
2-7
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The gross limits of automatic algorithm analysis are known. Wegbreit [61]
has constructed a system which can analyze simple LISP programs
automatically. No completely automatic system or complete formal system can
be constructed which can analyze all programs. This is firmly established by
computability theory. In between the simple programs and "all possible
programs®, there is a lot of ground which can be covered.

Cohen and Zuckerman [18] have built a system which greatly aids in the
analysis of algorithms. Their system helps the analyst with the details of
the analysis while requiring the analyst to provide the branching
probabilities. Wegbreit [62] developed a formal system for the verification
of program performance. His technique can also be used to provide the
branching probabilities which are needed. Recently, Ramshaw [50] has shown
that there are problems with Wegbreit's probabilistic approach and has
developed a formal system which he calls the frequency system.

While Ramshaw's frequency system can handle some of the programs that
Wegbreit's cannot, there are some simple ones which it Cann_ot handle either.
In particular, it cannot handle the "Useless Test":

if C then nothing else nothing endif
As Ramshaw points out, "“The incompleteness of our Conditional Rule has its
roots in one of the basic choices behind the frequency system: that
assertions should specify sets of frequentistic states." This seem.r; to be
symptomatic of those formal systems of algorithm analysis which have grown

from the work in program verification.
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While program verification has not lived up to the promises which were
held out for it several years ago [23], the field of automatic analysis is by
no means played out. Anderson and Lamagna [2] have chosen a different route
in the development of a formal system of algorithm analysis. Their approach
is tied very closely to the semantics of a program. Looping is translated
into equivalent recursive control structures so that recurrence relations
describing program behavior are readily ascertained. Probability density
functions are used to handle conditionals. The approach has been advanced to
the point where it can handle the "Useless Test", as well as all the other
programs covered by Ramshaw in his thesis. This work is encouraging, and
further improvements should be possible.

Important work on mathematical symbolic manipulation programs (e.g.,
MACSYMA [45], REDUCF [31], MATHLAB [26]), directed toward developing
techniques for automatically solving recurrence equations, will also be
required to support the automatic analysis of algorithms. Work on this
problem can proceed independently of that on formal techniques for analyzing
algorithms. However, a final prototype will be easier to build if the
interfaces between the parts are carefully defined in the beginning.

Another aspect of algorithmic complexity in need of further investigation
is that of computational tradeoffs between important system parameters, such
as time and storage. The development of a framework within which such
tradeoffs could be guantitatively studied would be of considerable importance
in the overall design of computer systems. It would facilitate comparisons
between alternative design strategies, and would enable the estimation of

performance parameters prior to implementation and testing.

2-9
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Savage [52] has been able to derive two computational inequalities
involving the time and storage required to compute a function. These
inequalities provide a lower bound on the best performance one can hope to
achieve when carrying out a given computational task. The framework used to
develop these inequalitiec results from the juxtaposition of several subjects
in theoretical computer science (e.g., switching and automata theory) with
mathematical modeling of general-purpose computers and their associated
storage devicas. |

Savage's first inequality states that in order to compute a given function
f on a general-purpose computer M

C(f) < kST
where

C(f) is the minimal size combinational switching network which computes f

directly,

S  is the storage capacity of the machine M,

T is the number of cycles (i.e., time) used to compute f on M, and

k; is a positive constant.

The second inequality states that
I(f) < ky(5*Tb)
where

I(f) is the minimum amount of information (i.e., minimal sized program)

which must be supplied to compute f,
S is the amount of information that M has initially,
To  is the amount of information which can be supplied to M

in T cycles using input words of b bits in size, and

2 1s a positive constant.
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These 1inequalities define bounds on the time-space tradeoffs which can be
achieved on real computing machinery (see Figure 1). Furthermore, they
suggest using computational cost measures of the form aST and 8S*yT, which for
nonnegative constants, «, 8, and y, are minimized when S is small and T is

large, or vice versa. This tends to support the cost effectiveness of

minicomputers and multiprogramming.

SA
N kp(svm)
¢ n
/
4 //klm
L LT, T

Figure 1. Storage-time boundaries. Forbidden region appears shaded.

Although the approach described above provides a general framework in
which time-storage tradeoffs can be studied, 1ittle is known about the
time-storage curves of particular funct‘lonﬁ. Recently, however, the pebble
game on directed acyclic graphs has been used to model the space-time behavior
of straight-line algoritms. Using this paradigm, nontrivial lower bounds on
the product of storage and time have been obtained for such problems as the
FFT (53], polynomial multiplication [59], matrix multiplication and inversion

[34], sorting [8], transitive closure [60], and the class of linear recursive
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programs [54]. More work of this nature should be encouraged since the
results could be extremely helpful in designing computer software. By
matching available resources against a time-storage curve for the problem
application at hand, one could be confident in choosing the most appropriate
design strategy.

Investigations of other types of computational tradeoffs are also
possible. It is well-known that in information retrieval there is a tradeoff
between the time required to insert or delete an item in a data structure and
the time required to search for an item. For example, insertion or deletion
N is a very simple operation in a linked list, but the worst case and average

case search times for this structure are both proportional to the number of

items in the list. At the other extreme, information can be retrieved from a
perfectly balanced binary search tree in time proportrional to the logarithm
of the number of items in the structure, but the insertion or deletion time is
proportional to the total number of items in the tree if one insists that
perfect balance be maintained. There are, of course, other storage strategies
which have been developed to achieve a desirable compromise between
insertion/deletion time and retrieval time. Although this issue has been
studied with respect to particular data structures, there is no underlying
general rule stating the fundamental 1imits within which such tradeoffs can be
achieved.

One final area where much useful work could be done is experimental
measurements of algorithmic performance. As mentioned earlier, theoretical
work on the analysis of algorithms has focused almost exclusively on
order-of-magnitude, or “big-oh" notation, results. Such results must be used

with a note of caution. A frequent scenario in algorithm design is the
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development over time of asymptotically better procedures for some problem
through the use of increasingly sophicticated data structures and clever
solution strategies. Oftentimes, as the asymptotic behavior of the methods
improve, the constant factors rise correspondingly. Theoreticians, in their
exuberance at finding asymptotically better algorithms, have tended to
overlook the constant factors, and the implications of their results have
consequently been often misinterpreted by practitioners.

Few experimental studies have been performed where alternative .algorithms
for the same task have been implemented and their behaviors measured and
compared using a standard input database. Performance profiles, consisting of
tables and graphs, showing execution time or storage requirements as a
function of input size could be obtained from such experiments. These
measurements would serve as a guide to software implementers in selecting the
best algorithm for their operational environment. This approach to algorithm
analysis has the important advantage that real performance data on typical
(viz., average case) inputs are used, instead of merely studying the algorithm
in more abstract (theoretical) terms. When the actual crossover points become
known as a result of such work, we strongly suspect that a few of the new,
asymptotically fast algorithms will be found wanting for practical input
ranges.

A catalog of performance profiles for the most important algorithms used
to solve commonplace computational tasks would be a very powerful software
design tool. Sinﬁlar_performance data is available to system designers in
other disciplines, but not to software engineers. The problem application
areas listed in the outline in this paper's Appendix could serve as a

convenient starting point for collecting data. Because of the large number of
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|
algorithms and problem areas which have been systematically studied, this ' i
project is an ideal candidate for “distributed research”. If such a modular

approach is taken, however, it would be wise to set some uniform guidelines at !
the outset so that the results of the separate data collection efforts would
all be on a comparable footing. Care must be taken in performing the !
experiments to minimize the effects of differing processor speeds and \
organizations, the compilers used and the degrees of optimization which they

perform, and operating system differences. Performance data from
| multiprogramming and timesharing environments may also be subject to
fluctuations in system workload.

2.2 Programming Languages
A program in a computer language is an interface between an abstract

specification of an algorithm and the implementation of that algorithm on a
computer. As such, there are two issues related to the performace of this
interface. These are:

1) Human performance. How best to insure easy implementation of the
algorithm, correctness of the program, portability, and
maintainability.

2) Machine performance. How does the algorithm, as implemented in a
programming language, perform on a computer?

Most work in this area has been focused on human performance.
Historically, this was manifested by the development of higher level :
programming languages -- both general purpose (e.g. FORTRAN, COBOL, PL/I, more n
recently PASCAL, ADA) and application oriented languages (e.g. SNOBOL, APL, _

LISP, GASP). Much of the recent work on the human performance issue has been : ‘Fa
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in the area called software science originally developed by Halstead [30].
Software science has evolved into an area of its own and represents an

important 1ine of continuing research.

The study of the machine performance of a high-level language
implementation of an algorithm, as opposed to the performance of an algorithm
itself, has proceeded in two directions. Initially, this took the form of
attempting to correct for the inefficiencies inherent in using high-level
languages and implementing optimization algorithms within compilers to
generate more efficient machine code.

A recent article by Oldehoeft and Bass [48] provides a mechanism for
pursing other dimensions of the machine performance of high-level language
implementations of algorithms. This is the notion of counting data movements
(work), both explicit and implied, within a program. Explicit data movements
are those in direct response to statements and operators in the language.
Implicit data movements are those that are done to prepare for the explicit
data movements. A comparison of the explicit work (language work) of an
algorithm implemented in two different programming languages gives a measure
of the execution time appropriateness of those languages for that algorithm.

One of the issues that needs to be examined in the area of programming
languages 1involves the tradeoff between machine performance and human
performance. Some specific tradeoffs that should be examined are:

1) What is the machine performance loss due to the use of recursion?
Recursion provides a powerful tool which simplifies the coding of
many algorithms but, unfortunately, the resultant programs are
usually characterized by poorer time and storage performance than

purely iterative ones. This is due to the fact that the general
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implementation of a recursive procedure call requires a run-time stack
whose size 1is proportional to the number of levels of recursion.
Additionally, the procedure calling mechanism itself takes more time
to execute than a nonrecursive one. A determination of the costs
involved will enable a decision to be made in particular cases about
the need for human efficiency as opposed to the need for machine
efficiency.

Seme recursive algorithms are known to have relatively simple and
far more efficient iterative realizations (e.g., the factorial
function), while others do not (e.g., an iterative version of
quicksort essentially duplicates the stacking mechanism inherent in
the recursive version). A promising line of research would be to
characterize the class of recursive algorithms which can be simply
translated into iterative programs without in effect simulating the
implementations of a general recursive procedure call. Such work
would be important since optimizimg compilers might be designed to
perform this conversion automatically. This would combine the
advantages of allowing the programmer the convenience of recursion,
while maintaining an efficient run-time environment.

What is the increase in psychological complexity for a more efficient
algorithm for particular problems? A typical scenmario in the analysis
of algorithms is an initial easy to understand algorithm which has
running time n3, followed by wmore complicated algorithms with
running times nz's, n? 109 n, nz. etc. Each successive
algorithm is asymptotically faster but, generally speaking, is more
complex and involves more initial overhead. The problem then becomes,
for a particular algorithm or class of algorithms, at what point is
the complicated formulation and initial overhead not worth the effort.
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2.3 Machine Organization

The performance of any algorithm will ultimately be limited by the
characteristics of the computer on which a programmed version of the algorithm
is executed. Clearly, the same algorithm, expressed in the same programming
language, will run several orders of magnitude faster on one of today's large
scale scientific machines (e.g., Cray-l or IBM 370/168) than on a
microcomputer (e.g., an Intel 8080-based system). Computer hardware affects
the performance of algorithms in three principal ways:

1) at the 1logical level (i.e., the technology and methods used to
implement the underlying adders, shifters, comparators, decoders,
etc.; the processor and memory cycle times),

2) at the level of processor organization (i.e., uniprocessors, pipelined
architectures, parallel and distributed logic), and

3) at the level of the suitability of the machine architecture for the
application at hand.

The functions performed by the circuitry of a computer can themselves be
analyzed from an algorithmic perspective. Two important measures of the
complexity of a combinational switching circuit are its size (the number of
logic elements) and its depth (the number of levels of logic). Size is
directly related to the cost of building the circuit and has an important
effect on reliability. ‘The more circuit elements there are, the more 1likely
one will malfunction and the entire unit fail. A circuit's depth determines
the delay inherent in its use. A circuit of depth d built from logical
elements with delay t requires time dt to operate. Savage studies these two

measures and their interrelation in [52].
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The following example illustrates how the algorithms used to implement a
computer's arithmetic and logical functions can dramatically impact the
execution times of programs running on the machine. The standard method for
adding two numbers of width w (i.e., w is the number of digits or bits)
operates in time proportional to w. The conditional-sum algorithm, a highly
parallel method, operates in time proportional to 'l-og2 w. For w=32, the
speed-up ratio is 32/5«6.4. A similar improvement can be realized in most
other hardware functions. The effect is even more dramatic for a multiply
instruction. The classical method, which employs successive shifting and

adding, operates in time uz

while a parallel method operating in time
(logw)2 is known. For ne32, the speed-up is (32)%/(15)%81. See
Savage [52] for a catalog of such results.

Kuck [41] and Savage [52] have both developed frameworks within which the
structure of computers and their computations can be analyzed. The methods
they espouse can be used as systematic tools for examining alternative
processor designs to estimate their performance characteristics. Applied
research to test the validity of these approaches and to make them more widely
available as practical design techniques would be an important contribution.

Some basic research into the complexity of logical functions may also be
worthwhile. Pattern matching and string processing is an area which has
received little attention in the past because these functions are seldom
performed directly in hardware. MWinograd [64] and others have proposed
schemes with minimal delay for arithmetic functions 1like addition and
multiplication, but the methods rely on encodings of the numbers which have
never been used. A study of the practicality of incorporating such schemes

into real computer systems could also prove interesting. Finally, the
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complexity of switching circuits can be wused as a springboard for
investigating the complexity of functions normally performed in software.
Lama,..a's study of monotone networks for sorting and merging, bilinear forms,
and routing problems is an example of such work [42].

Most of the algorithms studied to date have been designed for single
processor computers. As a result, the algorithms generally operate on data in
a sequential fashion. Over the past decade, supercomputers with pipelined
CPUs (e.g., Texas Instruments Advanced Scientific Computer [58], Control Data
STAR-100 [19], CRAY-1 [21]) and multiple processors (e.g., ILLIAC IV [4]) have
been designed and built to increase computational speeds and throughput. An
algorithm which is optimal for a single processor, may not be anywhere near
optimal in the environment of a parallel machine organization. Some research
has been done on parallel algorithms for various computational problems (see
[40] for a survey), but in much of this work the number of processors is
unrealistically assumed to be unbounded. If full advantage is to be taken of
the newer processor organizations, algorithms which more fully exploit the
parallelism in these architectures should be developed and evaluated.

An issue related to the implementation of algorithms on computers with
multiple CPUs is that of programming languages and language constructs for
parallel processing. Present day programming languages, even those containing
concurrency primitives, are woefully inadequate for this task. In view of the
difficulties that programmers are likely to have when thinking in parallel
terms to control efficiently multiple cooperating computations, much attention
should be given to this question. Many of the problems encountered fin
producing quality software before the widespread acceptance of structured

programming will probably reoccur if parallel algorithms are coded using
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undisciplined language constructs. Because of a likely increase in the
importance and application of parallel processing technigques over the next
decade, we anticipate that much careful study will have to be devoted to this
problem.

Today, high-level programming languages are preferred to assembly
languages for most programming applications. This is because it is far easier
to express algorithms in high-level languages, which are user-oriented, rather
than assembly languages, which mirror machine languages and are concerned
exclusively with controlling hardware features of computing equipment. This
fact has many important ramifications including the greater degree of
readability, correctness, maintainability, and upgradability of code written
in high-level languages. It is often the case that the higher level language
constructs which facilitate the coding of algorithms must be translated into
machine language representations which are inefficient in terms of execution
time and memory space. This occurs because the classical von Neumann-type
computer architecture employed by virtually all machines operating today is
concerned primarily with the word-at-a-time flow of information between CPU
and memory, rather than with actual problem-solving.

Von Neumann ccwuters provide a single basic architecture for all
applications. The motivation which led to the development of new programming
languages to facilitate the description of algorithms in different application
areas should serve as a model for developing new architectures to facilitate
the execution of algorithms expressed in these languages. Unfortunately,
there is often little or no interaction between computer designers and
"software people®. Although recent advances in hardware technology (e.g.,
large scale integration, pipelining, etc.) have been dramatic, the instruction
repetoires of today's computers are very similar to those of their
predecessors of 10 to 20 years.
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Computer architecture can be used as a vehicle to improve the executional
efficiency of high-level language programs. Machine instruction sets similar
to the intermediate code generated by a compiler (e.g., quadruples, triples)
provide a means for improving storage requirements and execution time when
compared to the conventional method of machine code generation and execution.
Carlson [12] surveys much of the previous work in designing high-level
language computer architectures. Due to rapidly advancing hardware technology
and recent advances in microprogramming techniques, the implementation of such
machines has become both technologically and economically feasible.
Microprogramming, in particular, provides a flexible and effective tool for
engineering new classes of computers [1].

More work 1is needed 1in the area of designing, building or
microprogramming, and experimentally testing high-level language computer
architectures. Particular attention should be paid to languages with special
features which greatly facilitate the specification of algorithms. Prime
candidates are APL [33] and SNOBOL [29].

APL contains a rich set of primitives which allow the programmer to
specify complex vector manipulation algorithms very concisely. The language
is better suited to processing arrays of data items than scalar-oriented
languages like FORTRAN and ALGOL. Because of the inherent parallelism in
these array operations, a hardware or firmware implementation of the language
should perform substantially better than a software implementation on a
. sequential von Neumann architecture. Furthermore, because the language is
interactive and allows dynamic data types, a number of attribute binding and
type and subscript checking operations must be deferred until execution time.
This run-time flexibility increases the desirability of a microprogrammed

implementation.
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SNOBOL4 is a convenient language for succinctly expressing algorithms for
pattern matching and the manipulation of character string information.
Because the features of the language are far removed from those of von
Neumann-type machines, elaborate software routines are required to implement
the language on conventional computers. This implies that huge amounts of
memory are generally required and program execution is quite slow. Thus, the

features provided in the language are prime candidates for investigating the
relationship between classes of algorithms and their efficient execution in

hardware or firmware.

3. PROBLEM APPLICATION AREAS

3.1 Computational Algebra

r————————— - C e — —_——- .- - - PR - - LT

Computational algebra is the study of algorithms for numerical
applications and to manipulate mathematical formulas. Typical problems
falling in this area include raising a number to a power, polynomial
evaluation and arithmetic, and matrix manipulations. Although this is perhaps
the oldest and most studied application area in algorithm theory, a good
introduction did not exist until recently. Lamagna discusses the problems
mentioned above from an algorithmic complexity perspective in a tutorial paper
[43]. This much needed work surveys the major results and open questions,
discusses the interplay between problems, and gives examples of the most
widely used algorithm design techniques.

Computational algebra is an area where experimental research on the
analysis of algorithms would be quite beneficial. Virtually all of the work
to date on analyzing and comparing algebraic and numerical algorithms has been
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done in a theoretical setting. Researchers have counted the number of scalar
arithmetic operations (e.g., additions, multiplications, etc.) that various
procedures utilize, but have ignored the cost of the other operations
necessary to actually program the algorithms to run on computers. This
overhead includes loop control and testing operations, as well as the time
required to access information stored in the computer's memory. Furthermore,
most published algorithm analyses are stated in terms of orders of magnitude,
and ignore constant factors of proportionality.

Cohen and Roth [17] have compared Strassen's algorithm with the classical
method for multiplying square n x n matrices [57]. “In theory“, Strassen's
algorithm is superior since it uses a number of arithmetic operations growing
as n2.81 to the classical algorithm's n3. However, Cohen and Roth found
experimentally that the classical algorithm was faster for matrices of size n
less than about 40. They also found a straight-forward recursive
implementation of Strassen‘s algorithm to have excessive overhead, and were
driven to custom-tailor a more efficient version. More experimental work of
this kind is sorely needed if the many new results of algorithm theory over
the past decade are to benefit actual programming practice. Alternative
algorithms for many basic algebraic and numeric problems would nicely lend
themselves to this type of comparison.

Programning languages and the notion of "language work® (see Oldehoeft and
Bass [3]) play a significant, yet unexplored, role in the implementation of
algebraic algorithms. Few would disagree that FORTRAN is clearly better for
programming numerical procedures than COBOL. But a language 1ike Iverson's APL
[33] is even more suitable for applications in this problem domain. The




language supports features which -enable users to succinctly specify complex
vector and array manipulation algorithms, which form the heart of wmost
problems in computational algebra. APL's power derives from two sources: (1)
its dynamic features for specifying the shapes and types of data, and (2) the
elegant way that a few general operators (e.g., inner product, outer product,
reduction) can be combined to perform a wide range of functions.

John Backus, in his 1977 ACM Turing Award Lecture, goes so far as to
credit APL for being the first Tanguage not based on the lambda calculus which
is free from the primitive word-at-a-time style of programming inherited from
von Neumann computers [3]. It is this freedom from conventional programming
structures which gives APL its expressive power. Even though APL may free the
programmer from thinking in word-at-a-time terms, the performance of
algorithms written in the language must still suffer from what Backus .calls
the "“von Neumann bottleneck® for implementations of the language on
conventional computers. This bottleneck stems from the fact that only a
single word at a time can be transmitted between the central processing unit
(CPU) and the memory store. The task of a program is to alter the contents of
the store in some significant way. Since conventional computers accomplish
this change by shuttling vast amounts of information, both data and
instructions, between the CPU and memory, we have grown accustomed to a style
of programming that largely concerns itself with traffic through the
bottleneck rather than with the larger conceptuz) units of our problems.

Here again, more research is needed on the relationship between computer
hardware and algorithms. Conventional computers have, in general, been

designed around instructions sets which support mainly arithmetic operations

rather than, say, character manipulation or list processing. But, perhaps




surprisingly, this does not imply that their instruction repetoires facilitate
the specification or improve the performance of algebraic algorithms.
Analogous to recent work on hardware implementations of the programming
language PASCAL [63], investigations to design a non-von Neumann APL machine
should be conducted. The resulting product should ultimately be subjected to
experimental testing and its performance compared with that of conventiona)
architectures.

Some progress has been made over the past decade in developing new
computer architectures to improve the executional performance of algorithms.
The most notable successes relating to the area of computationa) algebra are
pipelined architectures (e.g., CRAY-1 [21], Control Data STAR [19], Texas
Instruments ASC [58]) and array processors (e.g., ILLIAC IV [4]). Although
the state-of-the-art in parallel and distributed logic hardware has advanced
rapidly, very little is known about the process of brograming in a parallel
computing environment. In order to take advantage of the availability of
machines with multiple processors, the classical algebraic problems will have
to be reexamined and new algorithms devised. But even armed with such
algorithms, the process of writing programs which incorporate them will
involve the design and development of prograsming languages (or language
extensions) supporting parallelism primitives. In view of the slowness with
which structured programming control primitives have been adopted to cope with
the analogous problem for single processor systems, this task should not be
taken 1lightly. An ambitious 1long-range research program exploring the
relationship between the performance of parallel algorithms for algebraic
computation, the features of programming languages required to express them,

and their implementation in hardware would be of obvious benefit.
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Symbolic mathematical systems manipulate algebraic formulas directly.
These systems are capable of differentiating, integrating, factoring, and
simpl ifying formulas like x2-1 in addition to performing standard arithmetic
operations on such quantities. Examples of symbolic mathematical systems
include MACSYMA [45], REDUCE [31], and MATHLAB [26]. A1l of these systems are
quite big and run only on very large machines. Their operation typically
involves huge amounts of 1list processing. Oftentimes, the size of
intermediate results obtained before simplification is staggering ([46].
Because many of the operations built into these systems involve intricate
manipulations of large list structures, the time and storage efficiency of the
N algorithms used are of paramount importance.

If the convenience and power of such systems are to become available to
more users, several aspects of the performance of symbolic mathematical
& algorithms should be studied further. These include:

1) Studying the features of symbolic wathematical Tlanguages. An
important issue here 1{s the convenience and generality of
system-provided algorithms versus the efficiency of customized
routines for particular application areas.

2) Investigating computer architectures to facilitate list processing. A
related interesting project is the design and construction of a

o g

“symbolic calculator®.

b 3) Examining the computational complexity of symbolic mathematical

i probiems and algoritims, as opposed to purely numerical ones. We note
that some of the fast new algorithms for numerical problems (e.g.,

’ Strassen's method for matrix multipliication) are less efficient than

the classical algorithms for the corresponding sywbolic problem. This

has been a somewhat neglected area in computational algedbra where more

basic research is needed.
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Several important theoretical questions in the area of algebraic
complexity remain open. For example, the “best* matrix multiplication
dlgorithm to date is 0(n2-61), but with such an extremely high comstant of
proportionality that the method would be impractical to implement [49]. The
strongest lower bounds to date reveal only that order n2 arithmetic
operations are required. Thus, either a better 1lower bound or an
asymptotically far superior matrix multiplication algorithm must exist.
Similarly, it is unknown whether the fast Fourier transform (see [9]), whose
performance is O(n log n), is optimal for such applications as polynomial
miltiplication and the convolutien function used in signal processing. The
best lower bounds to date are unsurprisingly of order n. Questions such as
these have been attacked by leading researchers over the past decade, and no
solutions appear to be in sight. Although such fundamental questions are
significant, they are not amenable to assault by large research projects.
People will continue to work on these key issues anyway, and the questions

will more than likely be ultimately resolved by new and unexpected insights.
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3.2 Sorting, Searching and Database Systems
Searching and sorting are two of the oldest and best studied problems fin

computer science. The area of database systems is currently one of the most
active. From a theoretical perspective, a database system is a dynamic
combination of several different searching algorithms. It is the dynamic
(i.e., updatable) nature of the information in a database and the interaction

of the various searching algorithms used that make the anmalysis of database
systems difficult.

Knuth [38] is an excellent compilation of searching and sorting algorithms

(in isolation, not the interaction between several algoritims). This volume '
includes experimental comparisons of algorithms to determine crossover points 5
as well as theoretical analyses of numerous algorithms.

- One important concern in the analysis of a particular searching or sorting
algs ‘thm is whether the retrieval or sort is being done totally within memory
or whether 1/0 is necessary. “he appropriate measure of complexity for
in-core searches and sorts is the number of comparisons wade, whereas the
appropriate measure for 1/0 based searches and sorts is the number of /0
requests made. Another concern is the amount of work required to maintain the
data structure for a dynamic set of data. The existence of virtual memory
further complicates an analysis since with such systems the distinction
between CPU and 1/0 becomes blurred. The concept of work (i.e., data
transferred to and from memory) of Oldehoeft and Bass [48], when broadened to i
include work done by I1/0 as we)) as work done by the CPU, is useful in
analyzing this class of algorithms. ’ \
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The dominant algorithm and data structure that supports retrieval from a
dynamic set of data is the B-tree of Bayer and McCreight [6]. A number of
variants of this algorithm have been developed to reflect differing
application requirements. This algorithm is often used within database
systems as one of a series of interacting maintenance and retrieval
algorithms. At present, it is unclear how best to structure the interaction
between direct retrieval, hashing, and B-trees so as to minimize retrieval 1/0
requests yet allow maximum flexibility in terms of the logical structure of
the database being accessed. This is an area of investigation which should be
pursued, both theoretically and experimentally.

One approach to the problem of choosing the optimum combination of access
techniques is that proposed by March [44]. He provides a set of equations to
predict retrieval times based on retrieval patterns and combinations of access
methods used. These equations, if valid, would provide a database designer
with the tools needed to appropriately structure the access mechanisms used in
a particular database application. An experimental validation effort for
March's equations is presently underway [11]. If this effort is to be
ultimately fruitful, more analytic work needs to be done to broaden the
validity of the assumptions made.

From a language perspective, sorting, searching, and database systems have
given rise to the use of nonprocedural human-oriented structures either
enbedded within existing languages (e.g., the SORT verb in COBOL) or as
separate query languages for database systems. These structures are very
powerful since they allow great data movement with few commands. This yields
a high language level both in the static sense of Halstead [30] and the

dynamic sense of Oldehoeft and Bass [48). It is unclear, however, the extent
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to which powerful nonprocedural query languages actually simplify the overall
solution of problems. Although it may be easier for users to write queries,

the search strategies resulting from the use of particular operators may not

be clearly understood by the problem solver. A deeper understanding of the
underlying data structures and search algorithms is needed if system
performance is not to be adversely affected by the use of these languages.

The related problem of extending the Halstead notion of language level to
convey the complexity of language operators is a problem worthy of
investigation. As an example, consider the relational query languages
described in Date [22]. The same problem can be solved with the same data
structure using either a query language based on relational algebra or one
based on the relational calculus. The former is procedural in nature and
similar in spirit to modern algebra, while the latter is nonprocedural and
requires the use of quantifiers as in predicate logic. Although both
languages have about the same Halstead measures, their psychological
complexities (i.e., human comprehensability and usability) are not necessarily
the same. Once the factors that underlie psychological complexity are better
understood, it should be possible to design better application-oriented
languages. Another possibility, which should lead to similar results, is to

study various report writing languages with respect to both their features and

. their dependence on the storage structures of the underlying databases.

The hardware level of sorting and searching again finds expression in the
performance of database systems. Parallel schemes for sorting, merging, and
selection are discussed in Knuth [38]. Specialized architectures for database

systems have recently been proposed and implemented (see, for example, [32]).
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The virtues and drawbacks of such architectures need to be examined. Again,
the notion of run-time work of Oldehoeft and Bass [48] provides a framework
for the evaluation and comparison of various architectural proposals. In this
case, the differences between two architectures when solving the same problem
(i.e., identical database and search strategy) can be attributed to whether
the work (data transformation) is accomplished at the language level, at the

run-time level, or at the microcode level.

3.3 Pattern Matching

The pattern matching problem is concerned with the question of whether a
given character string, called the subject, contains a specified substring
pattern, and if so, locating where in the subject the pattern begins. This
problem arises often in processing text of any kind. Applications include
macro generators, text editors, word processors, and key-word-in-context
information retrieval.

The classical algorithm for this problem is to hold the pattern’s leftmost
character under the subject's leftmost character and .compare. If the two
strings match, we are done; otherwise, we slide the pattern one character to
the right and try again. Letting n and m denote the lengths of the subject
and pattern strings, respectively, this algorithm has a worst case running
time proportional to mn since at each of the n characters in the subject we
may have to compare all m characters in the pattern (e.g., for a subject

'AAMMAAAAA' and pattern ‘AAB').
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is to preprocess the pattern into a data structure representing a program to
search for that one specific pattern, and then apply the program to the
subject string. The preprocessing can be performed in time proportional to
the pattern's length m, and the program that is produced looks at each of the
n characters in the subject string at most once. Hence, the total running
time of the algorithm is proportional to m*n in the worst case.

Boyer and Moore [10] have wused the basic 1idea behind the
Knuth-Morris-Pratt (KMP) algorithm to derive a substring searching algorithm
with an even better average case performance. The KMP algorithm uses i+m
character matching operations to locate a pattern beginning at the i-th
position in the subject. Boyer and Moore's technique makes it unnecessary to
examine every character in the subject, and has been implemented on a PDP-10
computer in such a way that fewer than i+n machine instructions are executed
when Tooking for occurrences of five letter pdtterns in typical English
language text.

The pattern matching algorithms discussed here would serve as an
interesting case study for an experimental investigation of algorithm
performance. The classical method, probably the choice of most programmers,
has lowest "psychological complexity" but highest algorithmic complexity. It
would be interesting to see for just which length strings the other methods
are better in actual practice. Perhaps the high cost of preprocessing the
pattern strings in the KMP and Boyer-Moore algorithms results in excessive
overhead, rendering the algorithms infeasible for situations where a pattern
is to be used only once or twice, or for strings of the length typically

encountered in practice. The results of such experimental investigations
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would be particularly significant in view of the frequent occurrence of

pattern matching applications in nonnumeric information processing. These
results could serve to promote the use of the newer, more unfamiliar methods
described. Conversely, they might serve as a warning that constant factors
are important in actual practice and that asymptotic or order-of-magnitude
results must be carefully scrutinized and understood. Another fruitful area
of investigation would be to extend the ideas from automata theory serving as
the basis for the KMP algorithm to more sophisticated pattern matching
operations, like those found in the SNOBOL4 programming language (e.g.,
alternation, concatenation).

SNOBOL4 [29] is a programming language containing many features not
commonly found in other languages. These features greatly facilitate the
description of algorithms in several problem areas, most notably applications
requiring the manipulation of character string information. Because the
facilities of the language are quite different from those provided in
conventional computer architecture, elaborate software routines are required
to bridge this gap. This means that large amounts of memory are generally
used and program execution is quite slow. Thus, the language provides an
ideal vehicle for investigating the relationship between the performance of
algorithms, programming languages, and computer architecture.

The original 1implementation of SNOBOL4 [28] was interpretive, with
relatively machine-independent source code. To implement the language on any
given machine, one wrote machine code for a series of macros. Although this
provided a convenient mechanism for getting the language up quickly on a
variety of different computers, the resultant implementations were extremely
inefficient because of the mismatch between the macro source language and the
wide diversity of host machines. '
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An alternate approach to implementing the language is represented by
SPITBOL [24], a compiler that generates machine language code for a particular
computer from program code. The compiler approach greatly enhances execution
efficiency with 1ittle compromise in the SNOBOL source language [25]. But
because of the dynamic nature of the language, an extensive run-time library
is needed for the elaborate tracing routines, as well as pattern-matching
functions. The ratio of the amount of code supporting the run-time
environment to the size of -the compiler is approximately four to one, a
situation atypical of most compiling systems. Observations have shown that an

object program generated by the SPITBOL compiler spends a major portion of the

execution time in system subroutines. This extensive use of subroutines at

run-time again indicates a high discrepency between the features of the source
language and those of machine operation.

The convenience of the SNOBOL language for specifying character
manipulation algorithms versus the time and storage inefficiency of current
implementations justifies looking at alternative ways of implementing the
language. Several approaches to the design of a SNOBOL processor have been
suggested. Shapiro [56] proposed starting with a traditional von Neumann
architecture and adding new fundamental data types and machine instructions to
facilitate string processing and recursion. He actually developed a hierarchy
of machines, each incorporating more sophisticated hardware structures (e.g.,
character registers, associative memory), from which the end-user can select
the most cost-effective configuration for his application. Chan [14] and
Mukhopadhyay [47] have recently proposed non-von Neumann architectures for
efficiently implementing the pattern-matching features of the language. Their
designs are particularly attractive in light of recent dramatic advances in

hardware/firmware technology and rapidly declining hardware costs.
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The SNOBOL4 programming language can serve as a case study for
investigating most of the major issues addressed in this research plan. The
design and implementation of a SNOBOL machine, either in microcode or directly
in hardware, can be an experimental means for studying the impacts of computer
architecture and programming languages on the performance of algorithms. The
time and storage utilization of such a system could be compared with standard
implementations. Additionally, production of such a system involives the
development of hardware algorithms for nonnumeric computation, an area of
algorithmic complexity which has been given altogether too little attention in
the past. Finally, Mukhopadhyay [47] notes that many of the features of a
SNOBOL machine are required in the front-end of the special-purpose database

architectures which are currently being proposed.

3.4 Combinatorial Optimization Problems

This application area encompasses a wide variety of problems such as
finding properties of graphs and networks, optimal scheduling, bin packing,
set covering and partitioning. Despite the seeming diversity of these
problems, similar algorithm design strategies can be used to solve most of
them, and interesting relationships between many of the problems have been
shown to exist.

The problems which have been studied in the field of combinatorial
algorithms can fruitfully be divided into two categories, depending on their
worst case execution times. The first class consists of those problems having
algorithms whose running time is polynomial in the size of the input.
Important examples include finding the shortest distance between two points in

a network, the minimum spanning tree problem, maximizing flows in a network,
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matching and marriage problems, and testing a ¢ 20h for planarity. To a
novice, many of the problems which fall into this category at first seem
computationally intractable, requiring essentially exhaustive enumeration
procedures for their solution. Usually significant insights into a problem,
exploiting some underlying structure, are required before polynomial time
algorithms can be devised.

The second class of combinatorial problems are those for which no
polynomial time algorithm is known. Algorithms for such problems generally
resort to exhaustive enumeration of essentially all possible solutions, and in
the worst case have exponential running times. A simple example is the subset
sum problem. Here, we are given n positive integers X1seeesky and another
positive integer y. We are asked to identify the subset of xi's whose sum
is closest to, but does not exceed, the value of y. There are 2" subsets of
the X;'s, and it appears as though virtually all of these will have to be
tested in the worst case. Other important combinatorial problems for which no
polynomial time solution currently exists include O-1 integer programming, the
traveling salesman problem, testing for graph isomorphism (equivalence), graph
coloring, satisfiability of formulas in propositional logic, and a variety of
covering, packing and partitioning problems on sets and graphs.

One might argue that the notion of polynomial time is too imprecise to be
used as a criterfon for classifying the computational difficulty of a
problem. In fact, it has proven to be a very convenient measure. Actually,

very few polynomial algoritims with running times of degree greater than 4 or
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Most of the well-known combinatorial problems which appear to be
intrinsically exponential belong to a class called the NP-complete problems,
first explored by Cook [20] and Karp [37]. The problems in this class are all
computationally equivalent in the sense that if a polynomial time algorithm is
found for any one of the problems, then all of them can be solved in
polynomial time. Results of this nature are obtained by constructing a
polynomial time transformation mapping instances of one problem into
equivalent instances of another. Conversely, if an exponential lower bound
can be proven for any one of the problems in a sufficiently general model of
computation, then all of the NP-complete problems will require exponential
time. Most researchers in algorithmic complexity feel that this issue is the
most important open question in the entire field. Since this difficult
question has been worked on by a large number of prominent researchers, it
appears that a satisfactory resolution may not be forthcoming for quite some
time.

In view of the fact that instances of NP-complete problems frequently
arise in actual computing practice, ways of coping with the apparent
intractability of such problems must be devised. One approach is to reduce
the search effort as much as possible through the use of branch-and-bound and
dynamic programming procedures. The idea is to recognize partial solutions
that cannot possibly be extended to actual solutions as soon as possible and
eliminate them from further consideration. Although accepting the apparent
inevitability of an exponential time solution, use of such procedures can
result in substantial time sav{ngs. Another approach is to devise algorithms
which work quickly for the vast majority of inputs, but resort to more

exhaustive means when required.
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One fruitful method for dealing with many NP-complete problems is to
develop fast approximation algorithms, or heuristics, for their solution.
Johnson [35] is a pioneering work in this arei. Instead of looking for the
optimal solution to an instance of a problem, these procedures seek to find
acceptably good solutions, to within specified tolerances, but which operate
quickly. Some NP-complete problems can be dealt with satisfactorily in this
fashion, but for other problems (e.g., minimal graph coloring), it can be
shown that no heuristics exist. Few guiding principles are currently
available, and the methods developed to date are very problem specific. This
is an important area where further research would clearly be beneficial.

The Euclidean traveling salesman problem is perhaps the most famous
example of an NP-complete problem. In this probiem, a traveler has to visit
each of a number of designated cities on a map and return home via the minimum
distance route. A1l known algorithms which find the shortest tour have a
running time which is exponéntial in the number of cities. In view of the
computational infeasibility of finding this exact solution for even a moderate
number of points, much attention has been focused on the quality of
approximation algorithms for this probiem.

Previous researchers have examined the ratio of the path length produced
by various heuristic methods in the worst case to that of the optimal route.
Rosenkrantz, Stearns, and Lewis [51] have considered several approximation
schemes from this perspective. The best approximation algorithm to date for
this problem has been developed by Christofides [16]. It has an 0(n3)
running time and is guaranteed to find a path whose length is within a factor

of 1 1/2 times the optimum. Guarantees of this kind provide a warning about
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the possible dangers involved with using some particular method. However,
such results may be too conservative (pessimistic) since there is experimental
evidence that most reasonable approximation schemes perform quite well on the
average although there may exist rare maps which force them to find poor tours
[36].

Unfortunately, results describing the average behavior of algorithms are
generally far more complicated and difficult to derive than those concerning
worst case performance. Carney, Kamat, and Lamagna [13] have recently
developed techniques using order statistics for examining the expected
(average) lengths of paths produced by various approximation methods for the
Euclidean traveling salesman problem. Their basic method holds promise for
being applicable to other NP-complete problems as well. This and other lines
of research aimed toward improved techniques for analyzing the average case
behavior of algorithms should be encouraged.

Combinatorial algorithms is another area where experimental investigations
into the performance of algorithms would be useful. Although
order-of-magnitude analyses have been performed on many combinatorial
algorithms, some of the methods proposed appear to be more of theoretical
interest than practical value. A beneficial exercise would be to implement
competing algorithms for various important combinatorial problems to ascertain
thgir behavior and determine their crossover points. A recent paper by Cheung
[15], where the performances of eight algorithms for the maximum flow problem
were experimentally compared, is a good example of the type of work which is
needed.
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t Finally, a tutorial paper on combinatorial optimization problems and
algorithmic design strategies for their solution would serve a wide audience.

Most combinatorial problems are ammenable to solution by several different

A . - el gt it W

general methods of attack. Thus, it should be possible to illustrate the use

of many of the design techniques listed in the Appendix of this paper by ‘
applying each of them to a small number of classical combinatorial !
optimization problems. Most programmers are not familiar with these general
techniques and their wide applicability. They tend to view each algorithm as
a special case, and often lack the tools needed to systematically attack

unfamiliar problems.

3.5 Computational Geometry

Computational geometry is the area of computer science which deals with
the representation of geometric shapes and the solution of problems involving

geometric objects on computers. It touches on many other aspects of computer

science including, for example, algebraic complexity, graph and network
theory, sorting and searching, and computational statistics. Much of the work

in this area has been directed toward specific practical goals. The types of

problems which have been considered include finding the two nearest neighbors
among a set of points, locating the convex hull (or loosely, the perimeter) of

~ a point set, and determining inclusions within and intersections of geometric
s objects.

Computational geometry is still in its formative stages as a discipline
and many of its significant results are new. Because of this, the work which
has been done to date has not yet been collected into a concise and cohesive

body of knowledge. This is an area where a tutoria! or survey paper would be

problem was published by Bass and Schubert in 1967 [5], five years before the

of great benefit. The fact that an n log n algorithm for the convex hull l‘
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currently recognized “first® (Graham's algorithm in 1972 [27]), s
Characteristic of the field.

Shamos completed a doctoral thesis on computational geometry within the
framework of the analysis of algorithms in 1978 [55]). To the best of our
knowledge, this work is the first systematic approach to the problem. A
recent paper by Bentley [7] explores an algorithmic paradigm called
multidimensional divide-and-conquer. This technique, which can be used to
solve a wide varfety of problems, extends previous results to higher
dimensional spaces than the plane. These works could easily provide the
framework for the needed tutorial, to which motivational applications,
detailed algorithms, and recent developments should be added.

It 1is sometimes convenient to identify two classes of problems in
computational geometry: (1) those in which the points or objects are fixed in
space, and (2) those in which the points move. Most of the formal work to
date has been on problems where the points are fixed. Although some work has
been done in the area of changing projections or views of a set of fixed
points, 1ittle is known about the class of problems involving fndependently
moving points. This latter class includes such practical problems as
detecting and tracking independently moving objects.

Aside from the theoretical problems which should be dealt with, there are
practical problems of algorithm implementation which require experimental
investigations to settle. Here again, we feel there is a need to implement
alternative algorithms for common geometric problems and to measure and

compare their performances over a wide range of inputs.
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Another area for fruitful investigation 1is the relationship between
computational geometry and the various graphics programming languages which
are available or have been proposed. It should prove useful to investigate

whether one language is more natural than another for stating and solving

computational geometry problems.
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APPENDI X

Analysis of Algorithms and Computational Complexity
Outline and Bibliography

The goal of computational complexity is to gquantitatively study the
efficiency of algorithms for various tasks performed on a computer.
Complexity theory investigates the inherent difficulty of a particular
computational problem by deriving good lower bounds on the amounts of various
resources, such as time and storage, required for its solution. This provides
a framework within which the performances of alternative algorithms for the
problem can be compared and improved methods of solution developed.

The major topics in this emerging discipline are listed in the outline
which follows. The outline is divided into four principal sections:

1) general issues which delineate the scope of any particular

2lgorithmic complexity investigation,

2) design strategies which have been used to develop new algorithms in
diverse application areas and to categorize the problem-solving
approaches embodied in most algorithms,

3) methods for deriving lower bounds, or theoretical minima, on the
resource requirements to solve a given computational problem
independently of the algorithms used, and

4) application areas which have been studied, together with the major
problems which have been investigated within these areas.

For those interested in further information, an annotated select

bibliography, listing the most important books and survey papers which have
appeared, is also provided. Virtually all of the research published to. date

is accessible through references in the works cited.
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General

Algorithm Analysis and Computational Complexity
An Outline

Issues

1.
2.

4.
5.

Time and space analysis
Models of computation
« Turing machines
. computer-like models (RAMs and RASPs)
. decision trees
. straight-line programs (chains)
Exact vs. asymptotic analysis
. measuring problem size
. order-of-magnitude (0-, Q-, @ notation)
Upper vs. lower bounds
Worst case vs. average case

Algorithm Design Techniques

1.
2.
3.
4.
5.
6.
7.
8.

Divide-and-conquer (recursion)
Greedy method

Dynamic programming

Basic search and traversal
Backtracking

Branch-and-bound
Approximation algorithms

Data structuring

Lower Bounding Methods

1. Trivial lower bounds
2. Decision trees
. "information-theoretic" bounds
. oracles and adversary arguments
3. Problem reduction/transformation
. NP-completeness
4. Algebraic techniques
5. Miscellaneous tricks
Problem Areas
1. Ordering and information retrieval
. sorting
. merging
. selection
, . searching
! 2. Algebraic and numerical problems

p—

. evaluation of powers

. polynomial evaluation and interpolation
. polynomial multiplication and division
. matrix multiplication
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3. Graphs and networks
. minimal spanning tree

. shortest paths

. connectedness and survivability /connectivity, transitive
closure, articulation points, biconnectivity, strong comnectivity)
circuits (Eulerian, Hamiltonian, traveling salesman problem)
graph coloring
network flows
planarity
isomorphism
cliques
bipartite matching

4. . Computational geometry
. convex hull
. closest point problems
. intersection problems

5. Miscellaneous problems
. pattern matching in strings
. cryptography
. scheduling
. operations research
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Select Bibliography

Books

E. Knuth, The Art of Computer Programin% (Vol. 1, Fundamental Algorithms;
Xg;, 2, Seminumerical Algorithms; VoTl. 3, Sorting and SEarEﬁTﬁng"""'
» 9 ]

ison

Presents and discusses a wide spectrum of computational problems and
algorithms. It is the authoritative source for algorithm theory, and does
a nice job on certain aspects of complexity theory (e.g., the treatment of
sorting, merging, and selection in Vol. 3). This classic work provides
thoroughly comprehensive and historical coverage of its subject matter.

Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Computer
Science Press, 1978.

A good one-volume introduction to the field. The book is organized around
the major algorithm design techniques -- divide-and-conquer, the greedy
method, dynamic programming, basic search and traversal techniques,
backtracking, branch-and-bound, and algebraic simpiification and
transformations. Chapters on lower bound theory, NP-completeness, and
approximation algorithms are also included.

V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

A more theoretically oriented one-volume overview of the field. Covers
topics from a wide variety of problem areas. The book also formulates and
compares several computer models such as random access register and stored
program machines, and automata-theoretic models (e.g., Turing machines,
finite automata, pushdown machines). Contains an outstanding bibliography.

Borodin and I. Munro, The Computational .Complexity of Algebraic and Numeric
Problems. American Elsevier, 1975.

An excellent monograph providing virtually complete coverage of its
subject area. Considers such problems as polynomial evaluation,
interpolation, and matrix multiplication.

. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory
and Practice. Prentice-Hall, 1377.

Discusses the complexity of a number of important combinatorial problems
and analyzes the best known algorithms for their solution. Topics include
exhaustive search techniques, generating combinatorial objects, fast
sort{ng and searching, graph algorithms, and NP-hard and NP-complete
problems.
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M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completness. Freeman, 19/9.

Detailed guide to the theory of NP-completeness. Shows how to recognize
NP-complete problems and offers practical suggestions for dealing with
them effectively. Provides an overview of alternative directions for
further research, and contains an extensive 1list of NP-complete and
NP-hard problems.

J..E. Savage, The Complexity of Computing. Wiley-Interscience, 1976.

Covers all of the significant results on the complexity of switching
networks, and surveys several other problems in complexity theory.
Importantly, this work also attempts to provide a framework for the
quantitative study of time-storage tradeoffs and other performance
evaluation criteria on models of real computers.

L. I. Kronsjo, Algorithms: Their Complexity and Efficiency. Wiley, 1979.

A mathematically oriented book. Its most important contribution is a

detailed discussion of algorithms for numerical problems from the

perspective of their numerical accuracy, as well as efficiency. Problems

considered inciude polynomial evaluation, iterative processes, solving

sets of 1linear equations, and the fast Fourier transform. Several

ggnnumer(i’cal applications, most notably sorting and searching, are also
scussed.

S. Even, Algorithmic Combinatorics. Macmillan, 1973.

An early treatment of the basic questions explored in combinatorial
mathematics. Algorithmic aspects of enumeration problems including
generation of permutations and combinations, trees and their properties,
and fundamental properties of graphs and networks are considered.

S. Even, Graph Algorithms. Computer Science Press, 1979.

A rigorous treatment of several applications and problems from graph
theory. Trees and their properties, graph connectivity and searching,

network flows, graph planarity, and NP-completeness are discussed in this
monograph.

S. Baase, C%ter Alaoﬂthns: Introduction to Design and Analysis.
sley, .

Addison-

An upper-level undergraduate text covering selected topics from sorting, :
graphs, string matching, algebraic  problems, relations, and !
NP-completeness. Aims to develop systematic principles and techniques for
studying algorithms. Level of presentation is mathematically thorough.

{
s
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S. E. Goodman and S T. Hedetniemi, Introduction to the Design and
Analysis of Algorithms. McGraw-Hill, 1977.

An undergradua_te text, oriented more toward students of programming and
less n_lathemahcally rigorous than Baase. Like Horowitz and Sahni, this
book is organized around the basic algorithm design methods, but its

treatment 1s not nearly as comprehensive (usually one example per
technique).

Survey Papers

B. Weide, “A survey of analysis techniques for discrete algorithms", Computing
Surveys, Vol. 9, No. 4 (December 1977), pp. 291-313.

A good overview of the field. Discusses all the major issues including
models of computation, measuring problem size and asymptotic complexity,
lower bounding techniques, worst and average case behavior of algorithms,
and approximation methods for NP-complete problems.

J. L. Bentley, "An introduction to algorithm design", Computer, Vol. 12, No. 2
(February 1979), pp. 66-78.

Another good introduction, written primarily for the novice. Contains
more illustrative examples than Weide, but does not discuss issues in as
much depth. Problems covered include subset testing (via sorting and
searching), pattern matching in strings, the FFT, matrix multiplication,
and public-key cryptography.

J. E. Hopcroft, “Complexity of computer computations”, Proc. IFIP Congress
274, Vol. 3. (1974), PpP. 620-626.

Discusses unifying principles in the design of efficient algorithms
through the use of several well-chosen examples. More mathematically
oriented than some of the other surveys.

E. M. Reingold, “Establishing lower bounds on algorithms -- a survey®, AFIPS
Spring Joint Computer Conf. ‘72, Vol. 40 (1972), pp. 471-481.

A clearly written survey of many of the early results concerned with
deriving lower bounds on the complexity of functions. Emphasizes ordering
(sorting, searching, merging, and selection) and algebraic problems.

R. E. Tarjan, "Complexity of combinatorial algorithms“, SIAM Review, Vol. 20,
No. 3 (July 1978), pp. 457-491. -

Examines recent research into the compiexity of combinatorial problems,
ocusing on the aims of the work, the mathematical tools used, and the
important results. Topics covered inClude machine models and complexity
measures, data structures, algorithm design techniques, and a discussion
of ten tractable combinatorial problems.
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R. M. Karp, “On the computational complexity of combinatorial problems®,

Networks, Vol. 5, No. 1 (January 1975), pp. 45-68.
A very readable introduction to the theory of KP-completeness.

Finally, the following articles in Scientific American provide a layman's
introduction to most of the key issues in the field:

D.

H.

L

E. Knuth, "Algorithms®, Vol. 236, No. 4 (April 1977), pp.63-80.

R. Lewis and C. H. Papadimitriou, "The efficiency of algorithms®, Vol. 238,
No. 1 (January 1978), pp. 96-109.

J. Stockmeyer and A. K. Chandra, “"Intrinsically difficult problems”,
Vol. 240, No. 5 (May 1979), pp. 140-159.

Pippenger, “Complexity theory", Vol. 238, No. 6 (June 1978), pp. 114-124.

E. Hellman, “The mathematics of public-key cryptography”, Vol. 241, No. 2
(August 1979), pp, 146-157.

L. Graham, "The combinatorial mathematics of scheduling”, Vol. 238, No. 3
(March 1978), pp. 124-132.

G. Bland, "The allocation of resources by linear programming®, Vol. 244,
No. 6 (June 1981), pp. 126-144.
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